Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations

A method of improving the computational reactor model in the IR program on the basis of the experimental data on the xenon power oscillations is presented. It is concluded on the basis of the deviation of the computed axial offset from experiment that the program requires adjustment. The program was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic energy (New York, N.Y.) N.Y.), 2016-05, Vol.120 (1), p.10-14
Hauptverfasser: Aver’yanova, S. P., Vokhmyanina, N. S., Zlobin, D. A., Filimonov, P. E., Shumskii, B. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 10
container_title Atomic energy (New York, N.Y.)
container_volume 120
creator Aver’yanova, S. P.
Vokhmyanina, N. S.
Zlobin, D. A.
Filimonov, P. E.
Shumskii, B. E.
description A method of improving the computational reactor model in the IR program on the basis of the experimental data on the xenon power oscillations is presented. It is concluded on the basis of the deviation of the computed axial offset from experiment that the program requires adjustment. The program was modernized by replacing the dependence of the thermophysical parameters of the core on the specific rate of power release by solving the heat-conduction and heat-and-mass transfer equations. This is accomplished by means of the method and software used in the NOSTRA computer code, which were additionally improved by taking account of the influence of structural changes in the fuel on the thermal conductivity.
doi_str_mv 10.1007/s10512-016-0088-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880009910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A455404930</galeid><sourcerecordid>A455404930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-b5f06674bab66d8dd36500ed620f6e4bf69dd2c70ef84eb7d31c4dcec52dcd573</originalsourceid><addsrcrecordid>eNqNktFr1TAUxosoOKd_gG8BX_Sh20mbpOnjvNv0wsbGVcG3kCan1462qUmq239vuu5hEwQJJIfD7_s4OXxZ9pbCEQWojgMFToscqMgBpMzrZ9kB5VWZywL481SDKHNWcPkyexXCDQDUopYH2XyKv7B304BjJK4lmmzcMM1Rx86Nuic71CY6Ty6dxZ50I4k_kGx35Nq7vdcD-agDWuJGcnY7oe8Wm6Q61VEvze84pvva_UZProLp-v7eN7zOXrS6D_jm4T3Mvp2ffd18zi-uPm03Jxe54TWPecNbEKJijW6EsNLaUnAAtKKAViBrWlFbW5gKsJUMm8qW1DBr0PDCGpt-f5i9X30n737OGKIaumAwjTGim4OiUi6bqCn8BypkSVnFRELf_YXeuNmnbd1TIGtaVovh0UrtdY-qG1sXvTbpWBw640Zsu9Q_YZwzYHW5CD48ESQm4m3c6zkEtf2ye8rSlTXeheCxVVNavvZ3ioJaAqHWQKgUCLUEQtVJU6yakNhxj_7R2P8U_QEkU7cx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860891370</pqid></control><display><type>article</type><title>Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aver’yanova, S. P. ; Vokhmyanina, N. S. ; Zlobin, D. A. ; Filimonov, P. E. ; Shumskii, B. E.</creator><creatorcontrib>Aver’yanova, S. P. ; Vokhmyanina, N. S. ; Zlobin, D. A. ; Filimonov, P. E. ; Shumskii, B. E.</creatorcontrib><description>A method of improving the computational reactor model in the IR program on the basis of the experimental data on the xenon power oscillations is presented. It is concluded on the basis of the deviation of the computed axial offset from experiment that the program requires adjustment. The program was modernized by replacing the dependence of the thermophysical parameters of the core on the specific rate of power release by solving the heat-conduction and heat-and-mass transfer equations. This is accomplished by means of the method and software used in the NOSTRA computer code, which were additionally improved by taking account of the influence of structural changes in the fuel on the thermal conductivity.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-016-0088-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Computation ; Computer programs ; Computers ; Deviation ; Experimental data ; Hadrons ; Heat conductivity ; Heavy Ions ; Mass transfer ; Mathematical models ; Nuclear Chemistry ; Nuclear Energy ; Nuclear Physics ; Nuclear power plants ; Oscillations ; Physics ; Physics and Astronomy ; Radiation ; Reactors ; Software ; Studies ; Systems design ; Thermal conductivity ; Xenon</subject><ispartof>Atomic energy (New York, N.Y.), 2016-05, Vol.120 (1), p.10-14</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Atomic Energy is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-b5f06674bab66d8dd36500ed620f6e4bf69dd2c70ef84eb7d31c4dcec52dcd573</citedby><cites>FETCH-LOGICAL-c595t-b5f06674bab66d8dd36500ed620f6e4bf69dd2c70ef84eb7d31c4dcec52dcd573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-016-0088-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-016-0088-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Aver’yanova, S. P.</creatorcontrib><creatorcontrib>Vokhmyanina, N. S.</creatorcontrib><creatorcontrib>Zlobin, D. A.</creatorcontrib><creatorcontrib>Filimonov, P. E.</creatorcontrib><creatorcontrib>Shumskii, B. E.</creatorcontrib><title>Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>A method of improving the computational reactor model in the IR program on the basis of the experimental data on the xenon power oscillations is presented. It is concluded on the basis of the deviation of the computed axial offset from experiment that the program requires adjustment. The program was modernized by replacing the dependence of the thermophysical parameters of the core on the specific rate of power release by solving the heat-conduction and heat-and-mass transfer equations. This is accomplished by means of the method and software used in the NOSTRA computer code, which were additionally improved by taking account of the influence of structural changes in the fuel on the thermal conductivity.</description><subject>Accuracy</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Computers</subject><subject>Deviation</subject><subject>Experimental data</subject><subject>Hadrons</subject><subject>Heat conductivity</subject><subject>Heavy Ions</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Reactors</subject><subject>Software</subject><subject>Studies</subject><subject>Systems design</subject><subject>Thermal conductivity</subject><subject>Xenon</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktFr1TAUxosoOKd_gG8BX_Sh20mbpOnjvNv0wsbGVcG3kCan1462qUmq239vuu5hEwQJJIfD7_s4OXxZ9pbCEQWojgMFToscqMgBpMzrZ9kB5VWZywL481SDKHNWcPkyexXCDQDUopYH2XyKv7B304BjJK4lmmzcMM1Rx86Nuic71CY6Ty6dxZ50I4k_kGx35Nq7vdcD-agDWuJGcnY7oe8Wm6Q61VEvze84pvva_UZProLp-v7eN7zOXrS6D_jm4T3Mvp2ffd18zi-uPm03Jxe54TWPecNbEKJijW6EsNLaUnAAtKKAViBrWlFbW5gKsJUMm8qW1DBr0PDCGpt-f5i9X30n737OGKIaumAwjTGim4OiUi6bqCn8BypkSVnFRELf_YXeuNmnbd1TIGtaVovh0UrtdY-qG1sXvTbpWBw640Zsu9Q_YZwzYHW5CD48ESQm4m3c6zkEtf2ye8rSlTXeheCxVVNavvZ3ioJaAqHWQKgUCLUEQtVJU6yakNhxj_7R2P8U_QEkU7cx</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Aver’yanova, S. P.</creator><creator>Vokhmyanina, N. S.</creator><creator>Zlobin, D. A.</creator><creator>Filimonov, P. E.</creator><creator>Shumskii, B. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160501</creationdate><title>Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations</title><author>Aver’yanova, S. P. ; Vokhmyanina, N. S. ; Zlobin, D. A. ; Filimonov, P. E. ; Shumskii, B. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-b5f06674bab66d8dd36500ed620f6e4bf69dd2c70ef84eb7d31c4dcec52dcd573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Computers</topic><topic>Deviation</topic><topic>Experimental data</topic><topic>Hadrons</topic><topic>Heat conductivity</topic><topic>Heavy Ions</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Reactors</topic><topic>Software</topic><topic>Studies</topic><topic>Systems design</topic><topic>Thermal conductivity</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aver’yanova, S. P.</creatorcontrib><creatorcontrib>Vokhmyanina, N. S.</creatorcontrib><creatorcontrib>Zlobin, D. A.</creatorcontrib><creatorcontrib>Filimonov, P. E.</creatorcontrib><creatorcontrib>Shumskii, B. E.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aver’yanova, S. P.</au><au>Vokhmyanina, N. S.</au><au>Zlobin, D. A.</au><au>Filimonov, P. E.</au><au>Shumskii, B. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>120</volume><issue>1</issue><spage>10</spage><epage>14</epage><pages>10-14</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>A method of improving the computational reactor model in the IR program on the basis of the experimental data on the xenon power oscillations is presented. It is concluded on the basis of the deviation of the computed axial offset from experiment that the program requires adjustment. The program was modernized by replacing the dependence of the thermophysical parameters of the core on the specific rate of power release by solving the heat-conduction and heat-and-mass transfer equations. This is accomplished by means of the method and software used in the NOSTRA computer code, which were additionally improved by taking account of the influence of structural changes in the fuel on the thermal conductivity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10512-016-0088-9</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4258
ispartof Atomic energy (New York, N.Y.), 2016-05, Vol.120 (1), p.10-14
issn 1063-4258
1573-8205
language eng
recordid cdi_proquest_miscellaneous_1880009910
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Computation
Computer programs
Computers
Deviation
Experimental data
Hadrons
Heat conductivity
Heavy Ions
Mass transfer
Mathematical models
Nuclear Chemistry
Nuclear Energy
Nuclear Physics
Nuclear power plants
Oscillations
Physics
Physics and Astronomy
Radiation
Reactors
Software
Studies
Systems design
Thermal conductivity
Xenon
title Development of a Computational Reactor Model in the IR Program Based on Experimental Data on Xenon Power Oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Computational%20Reactor%20Model%20in%20the%20IR%20Program%20Based%20on%20Experimental%20Data%20on%20Xenon%20Power%20Oscillations&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Aver%E2%80%99yanova,%20S.%20P.&rft.date=2016-05-01&rft.volume=120&rft.issue=1&rft.spage=10&rft.epage=14&rft.pages=10-14&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-016-0088-9&rft_dat=%3Cgale_proqu%3EA455404930%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860891370&rft_id=info:pmid/&rft_galeid=A455404930&rfr_iscdi=true