Malware Function Estimation Using API in Initial Behavior
Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2017/01/01, Vol.E100.A(1), pp.167-175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E100.A |
creator | KAWAGUCHI, Naoto OMOTE, Kazumasa |
description | Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we give priority to analyze malware. However, estimating the malware functions has been difficult due to the increasing sophistication of malware. Actually, the previous researches do not estimate the functions of malware sufficiently. In this paper, we propose a new method which estimates the functions of unknown malware from APIs or categories observed by dynamic analysis on a host. We examine whether the proposed method can correctly estimate the malware functions by the supervised machine learning techniques. The results show that our new method can estimate the malware functions with the average accuracy of 83.4% using API information. |
doi_str_mv | 10.1587/transfun.E100.A.167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880008557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880008557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-f4e6809d491d2ae0afb6c75a55ca598d31b7d8ce1ea477ccf4aa7a1cc4fd3a333</originalsourceid><addsrcrecordid>eNplkLFOwzAQhi0EEqXwBCyRWFgS7NiOnTFULRQVwUBn6-o4ravUKXYC4u1JKVQIprvh-073_whdEpwQLsVN68GFqnPJmGCcFAnJxBEaEMF4TCgVx2iAc5LFkmN5is5CWGNMZErYAOWPUL-DN9Gkc7q1jYvGobUb-FrnwbplVDxPI-uiqbOthTq6NSt4s40_RycV1MFcfM8hmk_GL6P7ePZ0Nx0Vs1hnlLZxxUwmcV6ynJQpGAzVItOCA-caeC5LShailNoQA0wIrSsGIIBozaqSAqV0iK73d7e-ee1MaNXGBm3qGpxpuqCIlBhjybno0as_6LrpvOu_UyntE1PKWdpTdE9p34TgTaW2vk_sPxTBalen-qlT7epUherr7K2HvbUOLSzNwQHfWl2b_84v-QDpFXhlHP0EjYOFVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301833542</pqid></control><display><type>article</type><title>Malware Function Estimation Using API in Initial Behavior</title><source>J-STAGE Free</source><creator>KAWAGUCHI, Naoto ; OMOTE, Kazumasa</creator><creatorcontrib>KAWAGUCHI, Naoto ; OMOTE, Kazumasa</creatorcontrib><description>Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we give priority to analyze malware. However, estimating the malware functions has been difficult due to the increasing sophistication of malware. Actually, the previous researches do not estimate the functions of malware sufficiently. In this paper, we propose a new method which estimates the functions of unknown malware from APIs or categories observed by dynamic analysis on a host. We examine whether the proposed method can correctly estimate the malware functions by the supervised machine learning techniques. The results show that our new method can estimate the malware functions with the average accuracy of 83.4% using API information.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E100.A.167</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Categories ; dynamic analysis ; Dynamic tests ; Electronics ; Estimates ; Estimating ; Estimation ; function estimation ; Machine learning ; Malware ; Mathematical analysis ; Mathematical models ; risk evaluation ; supervised machine learning</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/01/01, Vol.E100.A(1), pp.167-175</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-f4e6809d491d2ae0afb6c75a55ca598d31b7d8ce1ea477ccf4aa7a1cc4fd3a333</citedby><cites>FETCH-LOGICAL-c633t-f4e6809d491d2ae0afb6c75a55ca598d31b7d8ce1ea477ccf4aa7a1cc4fd3a333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1884,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>KAWAGUCHI, Naoto</creatorcontrib><creatorcontrib>OMOTE, Kazumasa</creatorcontrib><title>Malware Function Estimation Using API in Initial Behavior</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we give priority to analyze malware. However, estimating the malware functions has been difficult due to the increasing sophistication of malware. Actually, the previous researches do not estimate the functions of malware sufficiently. In this paper, we propose a new method which estimates the functions of unknown malware from APIs or categories observed by dynamic analysis on a host. We examine whether the proposed method can correctly estimate the malware functions by the supervised machine learning techniques. The results show that our new method can estimate the malware functions with the average accuracy of 83.4% using API information.</description><subject>Categories</subject><subject>dynamic analysis</subject><subject>Dynamic tests</subject><subject>Electronics</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Estimation</subject><subject>function estimation</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>risk evaluation</subject><subject>supervised machine learning</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkLFOwzAQhi0EEqXwBCyRWFgS7NiOnTFULRQVwUBn6-o4ravUKXYC4u1JKVQIprvh-073_whdEpwQLsVN68GFqnPJmGCcFAnJxBEaEMF4TCgVx2iAc5LFkmN5is5CWGNMZErYAOWPUL-DN9Gkc7q1jYvGobUb-FrnwbplVDxPI-uiqbOthTq6NSt4s40_RycV1MFcfM8hmk_GL6P7ePZ0Nx0Vs1hnlLZxxUwmcV6ynJQpGAzVItOCA-caeC5LShailNoQA0wIrSsGIIBozaqSAqV0iK73d7e-ee1MaNXGBm3qGpxpuqCIlBhjybno0as_6LrpvOu_UyntE1PKWdpTdE9p34TgTaW2vk_sPxTBalen-qlT7epUherr7K2HvbUOLSzNwQHfWl2b_84v-QDpFXhlHP0EjYOFVQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>KAWAGUCHI, Naoto</creator><creator>OMOTE, Kazumasa</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Malware Function Estimation Using API in Initial Behavior</title><author>KAWAGUCHI, Naoto ; OMOTE, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-f4e6809d491d2ae0afb6c75a55ca598d31b7d8ce1ea477ccf4aa7a1cc4fd3a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Categories</topic><topic>dynamic analysis</topic><topic>Dynamic tests</topic><topic>Electronics</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Estimation</topic><topic>function estimation</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>risk evaluation</topic><topic>supervised machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAWAGUCHI, Naoto</creatorcontrib><creatorcontrib>OMOTE, Kazumasa</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWAGUCHI, Naoto</au><au>OMOTE, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malware Function Estimation Using API in Initial Behavior</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.A</volume><issue>1</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Malware proliferation has become a serious threat to the Internet in recent years. Most current malware are subspecies of existing malware that have been automatically generated by illegal tools. To conduct an efficient analysis of malware, estimating their functions in advance is effective when we give priority to analyze malware. However, estimating the malware functions has been difficult due to the increasing sophistication of malware. Actually, the previous researches do not estimate the functions of malware sufficiently. In this paper, we propose a new method which estimates the functions of unknown malware from APIs or categories observed by dynamic analysis on a host. We examine whether the proposed method can correctly estimate the malware functions by the supervised machine learning techniques. The results show that our new method can estimate the malware functions with the average accuracy of 83.4% using API information.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E100.A.167</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017/01/01, Vol.E100.A(1), pp.167-175 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880008557 |
source | J-STAGE Free |
subjects | Categories dynamic analysis Dynamic tests Electronics Estimates Estimating Estimation function estimation Machine learning Malware Mathematical analysis Mathematical models risk evaluation supervised machine learning |
title | Malware Function Estimation Using API in Initial Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malware%20Function%20Estimation%20Using%20API%20in%20Initial%20Behavior&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=KAWAGUCHI,%20Naoto&rft.date=2017-01-01&rft.volume=E100.A&rft.issue=1&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E100.A.167&rft_dat=%3Cproquest_cross%3E1880008557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301833542&rft_id=info:pmid/&rfr_iscdi=true |