Universality of pseudogap and emergent order in lightly doped Mott insulators
Surprising observations in the evolution of electronic states in electron-doped iridates provide fresh insight into the melting of the Mott state and might lead to a fuller understanding of corresponding processes in copper-oxide superconductors. It is widely believed that high-temperature supercond...
Gespeichert in:
Veröffentlicht in: | Nature physics 2017-01, Vol.13 (1), p.21-25 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Nature physics |
container_volume | 13 |
creator | Battisti, I. Bastiaans, K. M. Fedoseev, V. de la Torre, A. Iliopoulos, N. Tamai, A. Hunter, E. C. Perry, R. S. Zaanen, J. Baumberger, F. Allan, M. P. |
description | Surprising observations in the evolution of electronic states in electron-doped iridates provide fresh insight into the melting of the Mott state and might lead to a fuller understanding of corresponding processes in copper-oxide superconductors.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators
1
. When extra carriers are inserted into the parent state, the electrons become mobile but the strong correlations from the Mott state are thought to survive—inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor is whether these phenomena are mere distractions specific to hole-doped cuprates or represent genuine physics of doped Mott insulators. Here we visualize the evolution of the electronic states of (Sr
1−
x
La
x
)
2
IrO
4
, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different
2
,
3
. Using spectroscopic-imaging scanning tunnelling microscopy (SI-STM), we find that for a doping concentration of
x
≈ 5%, an inhomogeneous, phase-separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same iconic electronic order that is seen in underdoped cuprates
1
,
4
,
5
,
6
,
7
,
8
,
9
. We investigate the genesis of this state and find evidence at low doping for deeply trapped carriers, leading to fully gapped spectra, which abruptly collapse at a threshold of
x
≈ 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators. |
doi_str_mv | 10.1038/nphys3894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880008135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4293395671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-89a7a883879ce0be073b6107a90464e85c952534c5d111feac4f23a23d37eca93</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9BwIsK1Xy26VEWv2AXL-65ZNNpt0s3qUkq9N9bqSyipxmGh5fhReiSkjtKuLq33XYIXOXiCM1oJmTChKLHhz3jp-gshB0hgqWUz9BqbZtP8EG3TRywq3AXoC9drTusbYlhD74GG7HzJXjcWNw29Ta2Ay5dByVeuRjHa-hbHZ0P5-ik0m2Ai585R-unx_fFS7J8e35dPCwTw1MSE5XrTCvFVZYbIBsgGd-klGQ6JyIVoKTJJZNcGFlSSivQRlSMa8ZLnoHROZ-j6ym38-6jhxCLfRMMtK224PpQUKUIIYpyOdKrP3Tnem_H70YlJWdpnrJR3UzKeBeCh6rofLPXfigoKb6LLQ7FjvZ2smE0tgb_K_Ef_gKbMXo9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855326962</pqid></control><display><type>article</type><title>Universality of pseudogap and emergent order in lightly doped Mott insulators</title><source>Nature</source><source>SpringerLink (Online service)</source><creator>Battisti, I. ; Bastiaans, K. M. ; Fedoseev, V. ; de la Torre, A. ; Iliopoulos, N. ; Tamai, A. ; Hunter, E. C. ; Perry, R. S. ; Zaanen, J. ; Baumberger, F. ; Allan, M. P.</creator><creatorcontrib>Battisti, I. ; Bastiaans, K. M. ; Fedoseev, V. ; de la Torre, A. ; Iliopoulos, N. ; Tamai, A. ; Hunter, E. C. ; Perry, R. S. ; Zaanen, J. ; Baumberger, F. ; Allan, M. P.</creatorcontrib><description>Surprising observations in the evolution of electronic states in electron-doped iridates provide fresh insight into the melting of the Mott state and might lead to a fuller understanding of corresponding processes in copper-oxide superconductors.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators
1
. When extra carriers are inserted into the parent state, the electrons become mobile but the strong correlations from the Mott state are thought to survive—inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor is whether these phenomena are mere distractions specific to hole-doped cuprates or represent genuine physics of doped Mott insulators. Here we visualize the evolution of the electronic states of (Sr
1−
x
La
x
)
2
IrO
4
, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different
2
,
3
. Using spectroscopic-imaging scanning tunnelling microscopy (SI-STM), we find that for a doping concentration of
x
≈ 5%, an inhomogeneous, phase-separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same iconic electronic order that is seen in underdoped cuprates
1
,
4
,
5
,
6
,
7
,
8
,
9
. We investigate the genesis of this state and find evidence at low doping for deeply trapped carriers, leading to fully gapped spectra, which abruptly collapse at a threshold of
x
≈ 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3894</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/999 ; 639/766/119/1003 ; Atomic ; Carriers ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cuprates ; Dopants ; Doping ; Electronics ; Electrons ; Evolution ; High temperature ; Insulation ; Insulators ; letter ; Mathematical and Computational Physics ; Melting ; Microscopy ; Molecular ; Nucleation ; Optical and Plasma Physics ; Physics ; Superconductivity ; Temperature ; Theoretical</subject><ispartof>Nature physics, 2017-01, Vol.13 (1), p.21-25</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-89a7a883879ce0be073b6107a90464e85c952534c5d111feac4f23a23d37eca93</citedby><cites>FETCH-LOGICAL-c360t-89a7a883879ce0be073b6107a90464e85c952534c5d111feac4f23a23d37eca93</cites><orcidid>0000-0001-7104-7541 ; 0000-0001-5239-6826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3894$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3894$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Battisti, I.</creatorcontrib><creatorcontrib>Bastiaans, K. M.</creatorcontrib><creatorcontrib>Fedoseev, V.</creatorcontrib><creatorcontrib>de la Torre, A.</creatorcontrib><creatorcontrib>Iliopoulos, N.</creatorcontrib><creatorcontrib>Tamai, A.</creatorcontrib><creatorcontrib>Hunter, E. C.</creatorcontrib><creatorcontrib>Perry, R. S.</creatorcontrib><creatorcontrib>Zaanen, J.</creatorcontrib><creatorcontrib>Baumberger, F.</creatorcontrib><creatorcontrib>Allan, M. P.</creatorcontrib><title>Universality of pseudogap and emergent order in lightly doped Mott insulators</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Surprising observations in the evolution of electronic states in electron-doped iridates provide fresh insight into the melting of the Mott state and might lead to a fuller understanding of corresponding processes in copper-oxide superconductors.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators
1
. When extra carriers are inserted into the parent state, the electrons become mobile but the strong correlations from the Mott state are thought to survive—inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor is whether these phenomena are mere distractions specific to hole-doped cuprates or represent genuine physics of doped Mott insulators. Here we visualize the evolution of the electronic states of (Sr
1−
x
La
x
)
2
IrO
4
, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different
2
,
3
. Using spectroscopic-imaging scanning tunnelling microscopy (SI-STM), we find that for a doping concentration of
x
≈ 5%, an inhomogeneous, phase-separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same iconic electronic order that is seen in underdoped cuprates
1
,
4
,
5
,
6
,
7
,
8
,
9
. We investigate the genesis of this state and find evidence at low doping for deeply trapped carriers, leading to fully gapped spectra, which abruptly collapse at a threshold of
x
≈ 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.</description><subject>639/301/119/999</subject><subject>639/766/119/1003</subject><subject>Atomic</subject><subject>Carriers</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cuprates</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Evolution</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Insulators</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Melting</subject><subject>Microscopy</subject><subject>Molecular</subject><subject>Nucleation</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LxDAQBuAgCq6rB_9BwIsK1Xy26VEWv2AXL-65ZNNpt0s3qUkq9N9bqSyipxmGh5fhReiSkjtKuLq33XYIXOXiCM1oJmTChKLHhz3jp-gshB0hgqWUz9BqbZtP8EG3TRywq3AXoC9drTusbYlhD74GG7HzJXjcWNw29Ta2Ay5dByVeuRjHa-hbHZ0P5-ik0m2Ai585R-unx_fFS7J8e35dPCwTw1MSE5XrTCvFVZYbIBsgGd-klGQ6JyIVoKTJJZNcGFlSSivQRlSMa8ZLnoHROZ-j6ym38-6jhxCLfRMMtK224PpQUKUIIYpyOdKrP3Tnem_H70YlJWdpnrJR3UzKeBeCh6rofLPXfigoKb6LLQ7FjvZ2smE0tgb_K_Ef_gKbMXo9</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Battisti, I.</creator><creator>Bastiaans, K. M.</creator><creator>Fedoseev, V.</creator><creator>de la Torre, A.</creator><creator>Iliopoulos, N.</creator><creator>Tamai, A.</creator><creator>Hunter, E. C.</creator><creator>Perry, R. S.</creator><creator>Zaanen, J.</creator><creator>Baumberger, F.</creator><creator>Allan, M. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid></search><sort><creationdate>20170101</creationdate><title>Universality of pseudogap and emergent order in lightly doped Mott insulators</title><author>Battisti, I. ; Bastiaans, K. M. ; Fedoseev, V. ; de la Torre, A. ; Iliopoulos, N. ; Tamai, A. ; Hunter, E. C. ; Perry, R. S. ; Zaanen, J. ; Baumberger, F. ; Allan, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-89a7a883879ce0be073b6107a90464e85c952534c5d111feac4f23a23d37eca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/119/999</topic><topic>639/766/119/1003</topic><topic>Atomic</topic><topic>Carriers</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cuprates</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Evolution</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Insulators</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Melting</topic><topic>Microscopy</topic><topic>Molecular</topic><topic>Nucleation</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battisti, I.</creatorcontrib><creatorcontrib>Bastiaans, K. M.</creatorcontrib><creatorcontrib>Fedoseev, V.</creatorcontrib><creatorcontrib>de la Torre, A.</creatorcontrib><creatorcontrib>Iliopoulos, N.</creatorcontrib><creatorcontrib>Tamai, A.</creatorcontrib><creatorcontrib>Hunter, E. C.</creatorcontrib><creatorcontrib>Perry, R. S.</creatorcontrib><creatorcontrib>Zaanen, J.</creatorcontrib><creatorcontrib>Baumberger, F.</creatorcontrib><creatorcontrib>Allan, M. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battisti, I.</au><au>Bastiaans, K. M.</au><au>Fedoseev, V.</au><au>de la Torre, A.</au><au>Iliopoulos, N.</au><au>Tamai, A.</au><au>Hunter, E. C.</au><au>Perry, R. S.</au><au>Zaanen, J.</au><au>Baumberger, F.</au><au>Allan, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality of pseudogap and emergent order in lightly doped Mott insulators</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>21</spage><epage>25</epage><pages>21-25</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Surprising observations in the evolution of electronic states in electron-doped iridates provide fresh insight into the melting of the Mott state and might lead to a fuller understanding of corresponding processes in copper-oxide superconductors.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators
1
. When extra carriers are inserted into the parent state, the electrons become mobile but the strong correlations from the Mott state are thought to survive—inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor is whether these phenomena are mere distractions specific to hole-doped cuprates or represent genuine physics of doped Mott insulators. Here we visualize the evolution of the electronic states of (Sr
1−
x
La
x
)
2
IrO
4
, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different
2
,
3
. Using spectroscopic-imaging scanning tunnelling microscopy (SI-STM), we find that for a doping concentration of
x
≈ 5%, an inhomogeneous, phase-separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same iconic electronic order that is seen in underdoped cuprates
1
,
4
,
5
,
6
,
7
,
8
,
9
. We investigate the genesis of this state and find evidence at low doping for deeply trapped carriers, leading to fully gapped spectra, which abruptly collapse at a threshold of
x
≈ 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3894</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7104-7541</orcidid><orcidid>https://orcid.org/0000-0001-5239-6826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-01, Vol.13 (1), p.21-25 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880008135 |
source | Nature; SpringerLink (Online service) |
subjects | 639/301/119/999 639/766/119/1003 Atomic Carriers Classical and Continuum Physics Complex Systems Condensed Matter Physics Cuprates Dopants Doping Electronics Electrons Evolution High temperature Insulation Insulators letter Mathematical and Computational Physics Melting Microscopy Molecular Nucleation Optical and Plasma Physics Physics Superconductivity Temperature Theoretical |
title | Universality of pseudogap and emergent order in lightly doped Mott insulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20of%20pseudogap%20and%20emergent%20order%20in%20lightly%20doped%20Mott%20insulators&rft.jtitle=Nature%20physics&rft.au=Battisti,%20I.&rft.date=2017-01-01&rft.volume=13&rft.issue=1&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3894&rft_dat=%3Cproquest_cross%3E4293395671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855326962&rft_id=info:pmid/&rfr_iscdi=true |