A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System
This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/12/01, Vol.E99.D(12), pp.2934-2942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2942 |
---|---|
container_issue | 12 |
container_start_page | 2934 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E99.D |
creator | MOZAFFARI, Mohiyeddin SAFARINEJADIAN, Behrouz |
description | This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance. |
doi_str_mv | 10.1587/transinf.2016PAP0002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880007220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880007220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</originalsourceid><addsrcrecordid>eNpNkElPwzAQhS0EEmX5Bxx85BLwOIuTY4CySEUUsVytiWO3rlKn2K5Q_z2Bsp3mSfO-p5lHyAmwM8hLcR49umCdOeMMimk9ZYzxHTICkeUJpAXskhGroEjKPOX75CCEBWNQcshH5K2m931jO03rmXaRXmDQLb2yIXrbrOOgX9FbjLZ32A3bjQ4WHa27We9tnC-p6T297vp3iq6lTys9EOMQ7fILodZRpM8ejbGKPm1C1MsjsmewC_r4ex6Sl-vx8-VtMnm4ubusJ4nKBcSkgJZlrckbrVghSmM0b4ejC9FkbWsEVIa1VVoBCl6qAg0YBJUXJssENFlTpofkdJu78v3bWocolzYo3XXodL8OEspy6ElwzgZrtrUq34fgtZErP3zgNxKY_GxY_jQs_zU8YI9bbBEizvQvhD5a1ek_aFxV8koC_xb_Mn69ao5eapd-AC6ejww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880007220</pqid></control><display><type>article</type><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</creator><creatorcontrib>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</creatorcontrib><description>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016PAP0002</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Agents (artificial intelligence) ; Algorithms ; Bayesian analysis ; density estimation ; Gaussian mixture model ; Mathematical analysis ; Mathematical models ; mobile agent ; Networks ; Parameters ; sensor networks ; Statistics ; variational Bayesian</subject><ispartof>IEICE Transactions on Information and Systems, 2016/12/01, Vol.E99.D(12), pp.2934-2942</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</citedby><cites>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27912,27913,27914</link.rule.ids></links><search><creatorcontrib>MOZAFFARI, Mohiyeddin</creatorcontrib><creatorcontrib>SAFARINEJADIAN, Behrouz</creatorcontrib><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</description><subject>Agents (artificial intelligence)</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>density estimation</subject><subject>Gaussian mixture model</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mobile agent</subject><subject>Networks</subject><subject>Parameters</subject><subject>sensor networks</subject><subject>Statistics</subject><subject>variational Bayesian</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkElPwzAQhS0EEmX5Bxx85BLwOIuTY4CySEUUsVytiWO3rlKn2K5Q_z2Bsp3mSfO-p5lHyAmwM8hLcR49umCdOeMMimk9ZYzxHTICkeUJpAXskhGroEjKPOX75CCEBWNQcshH5K2m931jO03rmXaRXmDQLb2yIXrbrOOgX9FbjLZ32A3bjQ4WHa27We9tnC-p6T297vp3iq6lTys9EOMQ7fILodZRpM8ejbGKPm1C1MsjsmewC_r4ex6Sl-vx8-VtMnm4ubusJ4nKBcSkgJZlrckbrVghSmM0b4ejC9FkbWsEVIa1VVoBCl6qAg0YBJUXJssENFlTpofkdJu78v3bWocolzYo3XXodL8OEspy6ElwzgZrtrUq34fgtZErP3zgNxKY_GxY_jQs_zU8YI9bbBEizvQvhD5a1ek_aFxV8koC_xb_Mn69ao5eapd-AC6ejww</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>MOZAFFARI, Mohiyeddin</creator><creator>SAFARINEJADIAN, Behrouz</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><author>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agents (artificial intelligence)</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>density estimation</topic><topic>Gaussian mixture model</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mobile agent</topic><topic>Networks</topic><topic>Parameters</topic><topic>sensor networks</topic><topic>Statistics</topic><topic>variational Bayesian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOZAFFARI, Mohiyeddin</creatorcontrib><creatorcontrib>SAFARINEJADIAN, Behrouz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOZAFFARI, Mohiyeddin</au><au>SAFARINEJADIAN, Behrouz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>12</issue><spage>2934</spage><epage>2942</epage><pages>2934-2942</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016PAP0002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2016/12/01, Vol.E99.D(12), pp.2934-2942 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880007220 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Agents (artificial intelligence) Algorithms Bayesian analysis density estimation Gaussian mixture model Mathematical analysis Mathematical models mobile agent Networks Parameters sensor networks Statistics variational Bayesian |
title | A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mobile%20Agent%20Based%20Distributed%20Variational%20Bayesian%20Algorithm%20for%20Flow%20and%20Speed%20Estimation%20in%20a%20Traffic%20System&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=MOZAFFARI,%20Mohiyeddin&rft.date=2016&rft.volume=E99.D&rft.issue=12&rft.spage=2934&rft.epage=2942&rft.pages=2934-2942&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016PAP0002&rft_dat=%3Cproquest_cross%3E1880007220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880007220&rft_id=info:pmid/&rfr_iscdi=true |