A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System

This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/12/01, Vol.E99.D(12), pp.2934-2942
Hauptverfasser: MOZAFFARI, Mohiyeddin, SAFARINEJADIAN, Behrouz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2942
container_issue 12
container_start_page 2934
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator MOZAFFARI, Mohiyeddin
SAFARINEJADIAN, Behrouz
description This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.
doi_str_mv 10.1587/transinf.2016PAP0002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880007220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880007220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</originalsourceid><addsrcrecordid>eNpNkElPwzAQhS0EEmX5Bxx85BLwOIuTY4CySEUUsVytiWO3rlKn2K5Q_z2Bsp3mSfO-p5lHyAmwM8hLcR49umCdOeMMimk9ZYzxHTICkeUJpAXskhGroEjKPOX75CCEBWNQcshH5K2m931jO03rmXaRXmDQLb2yIXrbrOOgX9FbjLZ32A3bjQ4WHa27We9tnC-p6T297vp3iq6lTys9EOMQ7fILodZRpM8ejbGKPm1C1MsjsmewC_r4ex6Sl-vx8-VtMnm4ubusJ4nKBcSkgJZlrckbrVghSmM0b4ejC9FkbWsEVIa1VVoBCl6qAg0YBJUXJssENFlTpofkdJu78v3bWocolzYo3XXodL8OEspy6ElwzgZrtrUq34fgtZErP3zgNxKY_GxY_jQs_zU8YI9bbBEizvQvhD5a1ek_aFxV8koC_xb_Mn69ao5eapd-AC6ejww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880007220</pqid></control><display><type>article</type><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</creator><creatorcontrib>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</creatorcontrib><description>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016PAP0002</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Agents (artificial intelligence) ; Algorithms ; Bayesian analysis ; density estimation ; Gaussian mixture model ; Mathematical analysis ; Mathematical models ; mobile agent ; Networks ; Parameters ; sensor networks ; Statistics ; variational Bayesian</subject><ispartof>IEICE Transactions on Information and Systems, 2016/12/01, Vol.E99.D(12), pp.2934-2942</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</citedby><cites>FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27912,27913,27914</link.rule.ids></links><search><creatorcontrib>MOZAFFARI, Mohiyeddin</creatorcontrib><creatorcontrib>SAFARINEJADIAN, Behrouz</creatorcontrib><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</description><subject>Agents (artificial intelligence)</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>density estimation</subject><subject>Gaussian mixture model</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mobile agent</subject><subject>Networks</subject><subject>Parameters</subject><subject>sensor networks</subject><subject>Statistics</subject><subject>variational Bayesian</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkElPwzAQhS0EEmX5Bxx85BLwOIuTY4CySEUUsVytiWO3rlKn2K5Q_z2Bsp3mSfO-p5lHyAmwM8hLcR49umCdOeMMimk9ZYzxHTICkeUJpAXskhGroEjKPOX75CCEBWNQcshH5K2m931jO03rmXaRXmDQLb2yIXrbrOOgX9FbjLZ32A3bjQ4WHa27We9tnC-p6T297vp3iq6lTys9EOMQ7fILodZRpM8ejbGKPm1C1MsjsmewC_r4ex6Sl-vx8-VtMnm4ubusJ4nKBcSkgJZlrckbrVghSmM0b4ejC9FkbWsEVIa1VVoBCl6qAg0YBJUXJssENFlTpofkdJu78v3bWocolzYo3XXodL8OEspy6ElwzgZrtrUq34fgtZErP3zgNxKY_GxY_jQs_zU8YI9bbBEizvQvhD5a1ek_aFxV8koC_xb_Mn69ao5eapd-AC6ejww</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>MOZAFFARI, Mohiyeddin</creator><creator>SAFARINEJADIAN, Behrouz</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</title><author>MOZAFFARI, Mohiyeddin ; SAFARINEJADIAN, Behrouz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-61d04df5bec0678ffe2d01867b4ddf719f0d9391a728c6af1fa1c56f4471b4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agents (artificial intelligence)</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>density estimation</topic><topic>Gaussian mixture model</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mobile agent</topic><topic>Networks</topic><topic>Parameters</topic><topic>sensor networks</topic><topic>Statistics</topic><topic>variational Bayesian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOZAFFARI, Mohiyeddin</creatorcontrib><creatorcontrib>SAFARINEJADIAN, Behrouz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOZAFFARI, Mohiyeddin</au><au>SAFARINEJADIAN, Behrouz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>12</issue><spage>2934</spage><epage>2942</epage><pages>2934-2942</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>This paper provides a mobile agent based distributed variational Bayesian (MABDVB) algorithm for density estimation in sensor networks. It has been assumed that sensor measurements can be statistically modeled by a common Gaussian mixture model. In the proposed algorithm, mobile agents move through the routes of the network and compute the local sufficient statistics using local measurements. Afterwards, the global sufficient statistics will be updated using these local sufficient statistics. This procedure will be repeated until convergence is reached. Consequently, using this global sufficient statistics the parameters of the density function will be approximated. Convergence of the proposed method will be also analytically studied, and it will be shown that the estimated parameters will eventually converge to their true values. Finally, the proposed algorithm will be applied to one-dimensional and two dimensional data sets to show its promising performance.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016PAP0002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/12/01, Vol.E99.D(12), pp.2934-2942
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1880007220
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Agents (artificial intelligence)
Algorithms
Bayesian analysis
density estimation
Gaussian mixture model
Mathematical analysis
Mathematical models
mobile agent
Networks
Parameters
sensor networks
Statistics
variational Bayesian
title A Mobile Agent Based Distributed Variational Bayesian Algorithm for Flow and Speed Estimation in a Traffic System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mobile%20Agent%20Based%20Distributed%20Variational%20Bayesian%20Algorithm%20for%20Flow%20and%20Speed%20Estimation%20in%20a%20Traffic%20System&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=MOZAFFARI,%20Mohiyeddin&rft.date=2016&rft.volume=E99.D&rft.issue=12&rft.spage=2934&rft.epage=2942&rft.pages=2934-2942&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016PAP0002&rft_dat=%3Cproquest_cross%3E1880007220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880007220&rft_id=info:pmid/&rfr_iscdi=true