Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites
Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanot...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-12, Vol.122 (12), p.1-8, Article 1056 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Zhang, Xiwen Zhao, Dongyu Luan, Dongxue Bi, Changlong |
description | Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanotubes/nanonickel (EP/MWCNTs/Ni) composite materials. Additionally, the observed strong interfacial interaction between MWCNTs and the epoxy resin matrix is responsible for the enhanced mechanical properties based on the analysis from scanning electron microscope. Experimental results based on the analysis from dynamic mechanical analysis (DMA) indicate a significant improvement in the glass transition temperature (Tg) by around 20 °C upon the addition of 1.5 wt% MWCNTs/Ni to the epoxy matrix. The tensile strength and the impact strength of the composites can improve around 64.8 and 176.7% compared with that of cured pure epoxy and improve with increasing MWCNTs/Ni content up to 1.3 wt%. Finally, the excellent mechanics capability of EP/MWCNTs/Ni nanocomposites will provide enormous opportunities for aerospace applications where conductive adhesive or high-performance polymer materials are necessary. |
doi_str_mv | 10.1007/s00339-016-0597-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880006394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880814525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9b5bab22daa4e3b75c28a97b4b26f03c4fe19031c8bdccafa9738f37511ed8403</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMoWKs_wN2AGzdj85pHllKsCgU3ug5J5o6mziTTZAbtvze1LkQwm4Sb7xzuvQehS4JvCMbVImLMmMgxKXNciCpnR2hGOKM5Lhk-RjMseJXXTJSn6CzGDU6HUzpD25XSwRo1Wu8y5ZqsB_OmXKp02RD8AGG0EDPfZv3UjfZDdR00mVFBJ94p58dJw2L_SJp36LIA1rU-mETB4D93qRCty4zvBx_tCPEcnbSqi3Dxc8_Ry-ruefmQr5_uH5e369wwLsZc6EIrTWmjFAemq8LQWolKc03LFjPDWyACM2Jq3Rij2vTH6pZVBSHQ1ByzObo--KYxthPEUfY2Gug65cBPUZK6TksomeAJvfqDbvwUXOrum6oJL2iRKHKgTPAxBmjlEGyvwk4SLPchyEMIMoUg9yFIljT0oImJda8Qfjn_K_oCKsKMgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880814525</pqid></control><display><type>article</type><title>Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites</title><source>SpringerNature Journals</source><creator>Zhang, Xiwen ; Zhao, Dongyu ; Luan, Dongxue ; Bi, Changlong</creator><creatorcontrib>Zhang, Xiwen ; Zhao, Dongyu ; Luan, Dongxue ; Bi, Changlong</creatorcontrib><description>Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanotubes/nanonickel (EP/MWCNTs/Ni) composite materials. Additionally, the observed strong interfacial interaction between MWCNTs and the epoxy resin matrix is responsible for the enhanced mechanical properties based on the analysis from scanning electron microscope. Experimental results based on the analysis from dynamic mechanical analysis (DMA) indicate a significant improvement in the glass transition temperature (Tg) by around 20 °C upon the addition of 1.5 wt% MWCNTs/Ni to the epoxy matrix. The tensile strength and the impact strength of the composites can improve around 64.8 and 176.7% compared with that of cured pure epoxy and improve with increasing MWCNTs/Ni content up to 1.3 wt%. Finally, the excellent mechanics capability of EP/MWCNTs/Ni nanocomposites will provide enormous opportunities for aerospace applications where conductive adhesive or high-performance polymer materials are necessary.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0597-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Carbon ; Characterization and Evaluation of Materials ; Composite materials ; Condensed Matter Physics ; Dynamic mechanical analysis ; Epoxy resins ; Glass transition temperature ; Impact strength ; Machines ; Manufacturing ; Materials science ; Mechanical analysis ; Mechanical properties ; Multi wall carbon nanotubes ; Nanocomposites ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Polymer matrix composites ; Processes ; Scanning electron microscopy ; Surfaces and Interfaces ; Tensile strength ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2016-12, Vol.122 (12), p.1-8, Article 1056</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9b5bab22daa4e3b75c28a97b4b26f03c4fe19031c8bdccafa9738f37511ed8403</citedby><cites>FETCH-LOGICAL-c349t-9b5bab22daa4e3b75c28a97b4b26f03c4fe19031c8bdccafa9738f37511ed8403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0597-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0597-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Xiwen</creatorcontrib><creatorcontrib>Zhao, Dongyu</creatorcontrib><creatorcontrib>Luan, Dongxue</creatorcontrib><creatorcontrib>Bi, Changlong</creatorcontrib><title>Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanotubes/nanonickel (EP/MWCNTs/Ni) composite materials. Additionally, the observed strong interfacial interaction between MWCNTs and the epoxy resin matrix is responsible for the enhanced mechanical properties based on the analysis from scanning electron microscope. Experimental results based on the analysis from dynamic mechanical analysis (DMA) indicate a significant improvement in the glass transition temperature (Tg) by around 20 °C upon the addition of 1.5 wt% MWCNTs/Ni to the epoxy matrix. The tensile strength and the impact strength of the composites can improve around 64.8 and 176.7% compared with that of cured pure epoxy and improve with increasing MWCNTs/Ni content up to 1.3 wt%. Finally, the excellent mechanics capability of EP/MWCNTs/Ni nanocomposites will provide enormous opportunities for aerospace applications where conductive adhesive or high-performance polymer materials are necessary.</description><subject>Applied physics</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Dynamic mechanical analysis</subject><subject>Epoxy resins</subject><subject>Glass transition temperature</subject><subject>Impact strength</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer matrix composites</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strength</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhYMoWKs_wN2AGzdj85pHllKsCgU3ug5J5o6mziTTZAbtvze1LkQwm4Sb7xzuvQehS4JvCMbVImLMmMgxKXNciCpnR2hGOKM5Lhk-RjMseJXXTJSn6CzGDU6HUzpD25XSwRo1Wu8y5ZqsB_OmXKp02RD8AGG0EDPfZv3UjfZDdR00mVFBJ94p58dJw2L_SJp36LIA1rU-mETB4D93qRCty4zvBx_tCPEcnbSqi3Dxc8_Ry-ruefmQr5_uH5e369wwLsZc6EIrTWmjFAemq8LQWolKc03LFjPDWyACM2Jq3Rij2vTH6pZVBSHQ1ByzObo--KYxthPEUfY2Gug65cBPUZK6TksomeAJvfqDbvwUXOrum6oJL2iRKHKgTPAxBmjlEGyvwk4SLPchyEMIMoUg9yFIljT0oImJda8Qfjn_K_oCKsKMgw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhang, Xiwen</creator><creator>Zhao, Dongyu</creator><creator>Luan, Dongxue</creator><creator>Bi, Changlong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites</title><author>Zhang, Xiwen ; Zhao, Dongyu ; Luan, Dongxue ; Bi, Changlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9b5bab22daa4e3b75c28a97b4b26f03c4fe19031c8bdccafa9738f37511ed8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Dynamic mechanical analysis</topic><topic>Epoxy resins</topic><topic>Glass transition temperature</topic><topic>Impact strength</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer matrix composites</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strength</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiwen</creatorcontrib><creatorcontrib>Zhao, Dongyu</creatorcontrib><creatorcontrib>Luan, Dongxue</creatorcontrib><creatorcontrib>Bi, Changlong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiwen</au><au>Zhao, Dongyu</au><au>Luan, Dongxue</au><au>Bi, Changlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>122</volume><issue>12</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>1056</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Nanonickel is supported on the surface of the multiwalled carbon nanotubes (MWCNTs), forming the multiwalled carbon nanotubes/nanonickel composites (MWCNTs/Ni). By using the emulsifying machine dispersing MWCNTs/Ni evenly among epoxy resin, which is prepared into epoxy resin/multiwalled carbon nanotubes/nanonickel (EP/MWCNTs/Ni) composite materials. Additionally, the observed strong interfacial interaction between MWCNTs and the epoxy resin matrix is responsible for the enhanced mechanical properties based on the analysis from scanning electron microscope. Experimental results based on the analysis from dynamic mechanical analysis (DMA) indicate a significant improvement in the glass transition temperature (Tg) by around 20 °C upon the addition of 1.5 wt% MWCNTs/Ni to the epoxy matrix. The tensile strength and the impact strength of the composites can improve around 64.8 and 176.7% compared with that of cured pure epoxy and improve with increasing MWCNTs/Ni content up to 1.3 wt%. Finally, the excellent mechanics capability of EP/MWCNTs/Ni nanocomposites will provide enormous opportunities for aerospace applications where conductive adhesive or high-performance polymer materials are necessary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0597-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-12, Vol.122 (12), p.1-8, Article 1056 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880006394 |
source | SpringerNature Journals |
subjects | Applied physics Carbon Characterization and Evaluation of Materials Composite materials Condensed Matter Physics Dynamic mechanical analysis Epoxy resins Glass transition temperature Impact strength Machines Manufacturing Materials science Mechanical analysis Mechanical properties Multi wall carbon nanotubes Nanocomposites Nanostructure Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Polymer matrix composites Processes Scanning electron microscopy Surfaces and Interfaces Tensile strength Thin Films |
title | Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20mechanical%20properties%20of%20multiwalled%20carbon%20nanotube/nanonickel%20reinforced%20epoxy%20resin%20composites&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zhang,%20Xiwen&rft.date=2016-12-01&rft.volume=122&rft.issue=12&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=1056&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0597-3&rft_dat=%3Cproquest_cross%3E1880814525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880814525&rft_id=info:pmid/&rfr_iscdi=true |