Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors

By developing a facile low temperature hydrothermal process, we demonstrate the direct growth of nickel and lanthanum hydroxide nanocomposites on Ni‐foam substrate. The hydroxide nanocomposites thus derived show much enhanced overall electrochemical capacitance and improved stability of the alpha ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-01, Vol.100 (1), p.247-256
Hauptverfasser: Ho, Kuan‐Hung, Liu, Huajun, Ke, Qing Qing, Mao, Lu, Hu, Yating, Li, Xu, Wang, John, Vyas, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 1
container_start_page 247
container_title Journal of the American Ceramic Society
container_volume 100
creator Ho, Kuan‐Hung
Liu, Huajun
Ke, Qing Qing
Mao, Lu
Hu, Yating
Li, Xu
Wang, John
Vyas, B.
description By developing a facile low temperature hydrothermal process, we demonstrate the direct growth of nickel and lanthanum hydroxide nanocomposites on Ni‐foam substrate. The hydroxide nanocomposites thus derived show much enhanced overall electrochemical capacitance and improved stability of the alpha nickel hydroxide phase in alkaline solution. By adjusting the initial molar ratio between nickel and lanthanum nitrates from 1:0 to 1:2, the electrochemical behavior, such as specific capacitance, shows a dramatic change, while the nickel hydroxide phase evolves from beta nickel hydroxides (1:0) to alpha nickel hydroxide (1:2). Lanthanum hydroxide is not expected to contribute to the pseudocapacitance as it only shows a capacitance of
doi_str_mv 10.1111/jace.14546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880006035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880006035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3716-35c7bc15cf50ed10f62d72203b74132bb3747a6a8e58db65d419ee854d87416d3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pxU8Q8CJCZ9I2aXscY7rJnIJ6LmnySjPbpiatc9_ezHnyYC4vD37v8fgjdEnJhPp3uxESJjRmMT9CI8oYDcKM8mM0IoSEQZKG5BSdObfxLc3SeIS6tZbvUGPRKrwSbV-JdmjwYqes-dIK8Fq0RpqmM0734PBW9xV-HGSFl01nzScoPK9B9tbIChotRY2fwZbGNqKVgP0HvwwdWCk6IXVvrDtHJ6WoHVz81jF6u5u_zhbB6ul-OZuuAhkllAcRk0khKZMlI6AoKXmokjAkUZHENAqLIkriRHCRAktVwZmKaQaQslilHnAVjdH1Ya8_82MA1-eNdhLqWrRgBpfTNPUhcBIxT6_-0I0ZbOuv84oljIeZd2N0c1DSGucslHlndSPsLqck34ef78PPf8L3mB7wVtew-0fmD9PZ_DDzDaUth48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857562960</pqid></control><display><type>article</type><title>Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ho, Kuan‐Hung ; Liu, Huajun ; Ke, Qing Qing ; Mao, Lu ; Hu, Yating ; Li, Xu ; Wang, John ; Vyas, B.</creator><contributor>Vyas, B.</contributor><creatorcontrib>Ho, Kuan‐Hung ; Liu, Huajun ; Ke, Qing Qing ; Mao, Lu ; Hu, Yating ; Li, Xu ; Wang, John ; Vyas, B. ; Vyas, B.</creatorcontrib><description>By developing a facile low temperature hydrothermal process, we demonstrate the direct growth of nickel and lanthanum hydroxide nanocomposites on Ni‐foam substrate. The hydroxide nanocomposites thus derived show much enhanced overall electrochemical capacitance and improved stability of the alpha nickel hydroxide phase in alkaline solution. By adjusting the initial molar ratio between nickel and lanthanum nitrates from 1:0 to 1:2, the electrochemical behavior, such as specific capacitance, shows a dramatic change, while the nickel hydroxide phase evolves from beta nickel hydroxides (1:0) to alpha nickel hydroxide (1:2). Lanthanum hydroxide is not expected to contribute to the pseudocapacitance as it only shows a capacitance of &lt;10 F/g. The specific capacitance is increased from 970 F/g (Ni:La = 1:0) to 1874 F/g (Ni: La = 1:2) at the discharging current of 1 A/g. At high discharging currents (e.g. 10 A/g), the Ni:La = 1:2 sample can retain a capacitance of 1055 F/g. An excellent cycling performance is demonstrated for the Ni:La = 1:2 nanocomposite sample upon 2000 cycles at the discharging current density of 2 A/g, where the stability of alpha nickel hydroxide in the alkaline solution is improved. The low temperature hydrothermal method compares favorably to other previously documented preparation processes, such as chemical coprecipitation and electrochemical deposition, for lanthanum‐doped nickel hydroxides, where the specific capacitance is typically less than 1000 F/g (1 A/g).</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14546</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Capacitance ; Discharge ; Electrochemical analysis ; hydrothermal process ; Hydroxides ; Lanthanum ; Lanthanum Nickel hydroxides ; nanocomposite ; Nanocomposites ; Nickel ; Stability ; supercapacitors</subject><ispartof>Journal of the American Ceramic Society, 2017-01, Vol.100 (1), p.247-256</ispartof><rights>2016 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3716-35c7bc15cf50ed10f62d72203b74132bb3747a6a8e58db65d419ee854d87416d3</citedby><cites>FETCH-LOGICAL-c3716-35c7bc15cf50ed10f62d72203b74132bb3747a6a8e58db65d419ee854d87416d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14546$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14546$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>Vyas, B.</contributor><creatorcontrib>Ho, Kuan‐Hung</creatorcontrib><creatorcontrib>Liu, Huajun</creatorcontrib><creatorcontrib>Ke, Qing Qing</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Hu, Yating</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Vyas, B.</creatorcontrib><title>Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors</title><title>Journal of the American Ceramic Society</title><description>By developing a facile low temperature hydrothermal process, we demonstrate the direct growth of nickel and lanthanum hydroxide nanocomposites on Ni‐foam substrate. The hydroxide nanocomposites thus derived show much enhanced overall electrochemical capacitance and improved stability of the alpha nickel hydroxide phase in alkaline solution. By adjusting the initial molar ratio between nickel and lanthanum nitrates from 1:0 to 1:2, the electrochemical behavior, such as specific capacitance, shows a dramatic change, while the nickel hydroxide phase evolves from beta nickel hydroxides (1:0) to alpha nickel hydroxide (1:2). Lanthanum hydroxide is not expected to contribute to the pseudocapacitance as it only shows a capacitance of &lt;10 F/g. The specific capacitance is increased from 970 F/g (Ni:La = 1:0) to 1874 F/g (Ni: La = 1:2) at the discharging current of 1 A/g. At high discharging currents (e.g. 10 A/g), the Ni:La = 1:2 sample can retain a capacitance of 1055 F/g. An excellent cycling performance is demonstrated for the Ni:La = 1:2 nanocomposite sample upon 2000 cycles at the discharging current density of 2 A/g, where the stability of alpha nickel hydroxide in the alkaline solution is improved. The low temperature hydrothermal method compares favorably to other previously documented preparation processes, such as chemical coprecipitation and electrochemical deposition, for lanthanum‐doped nickel hydroxides, where the specific capacitance is typically less than 1000 F/g (1 A/g).</description><subject>Capacitance</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>hydrothermal process</subject><subject>Hydroxides</subject><subject>Lanthanum</subject><subject>Lanthanum Nickel hydroxides</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nickel</subject><subject>Stability</subject><subject>supercapacitors</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgCs7pxU8Q8CJCZ9I2aXscY7rJnIJ6LmnySjPbpiatc9_ezHnyYC4vD37v8fgjdEnJhPp3uxESJjRmMT9CI8oYDcKM8mM0IoSEQZKG5BSdObfxLc3SeIS6tZbvUGPRKrwSbV-JdmjwYqes-dIK8Fq0RpqmM0734PBW9xV-HGSFl01nzScoPK9B9tbIChotRY2fwZbGNqKVgP0HvwwdWCk6IXVvrDtHJ6WoHVz81jF6u5u_zhbB6ul-OZuuAhkllAcRk0khKZMlI6AoKXmokjAkUZHENAqLIkriRHCRAktVwZmKaQaQslilHnAVjdH1Ya8_82MA1-eNdhLqWrRgBpfTNPUhcBIxT6_-0I0ZbOuv84oljIeZd2N0c1DSGucslHlndSPsLqck34ef78PPf8L3mB7wVtew-0fmD9PZ_DDzDaUth48</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Ho, Kuan‐Hung</creator><creator>Liu, Huajun</creator><creator>Ke, Qing Qing</creator><creator>Mao, Lu</creator><creator>Hu, Yating</creator><creator>Li, Xu</creator><creator>Wang, John</creator><creator>Vyas, B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201701</creationdate><title>Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors</title><author>Ho, Kuan‐Hung ; Liu, Huajun ; Ke, Qing Qing ; Mao, Lu ; Hu, Yating ; Li, Xu ; Wang, John ; Vyas, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3716-35c7bc15cf50ed10f62d72203b74132bb3747a6a8e58db65d419ee854d87416d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>hydrothermal process</topic><topic>Hydroxides</topic><topic>Lanthanum</topic><topic>Lanthanum Nickel hydroxides</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nickel</topic><topic>Stability</topic><topic>supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Kuan‐Hung</creatorcontrib><creatorcontrib>Liu, Huajun</creatorcontrib><creatorcontrib>Ke, Qing Qing</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Hu, Yating</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Vyas, B.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Kuan‐Hung</au><au>Liu, Huajun</au><au>Ke, Qing Qing</au><au>Mao, Lu</au><au>Hu, Yating</au><au>Li, Xu</au><au>Wang, John</au><au>Vyas, B.</au><au>Vyas, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-01</date><risdate>2017</risdate><volume>100</volume><issue>1</issue><spage>247</spage><epage>256</epage><pages>247-256</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>By developing a facile low temperature hydrothermal process, we demonstrate the direct growth of nickel and lanthanum hydroxide nanocomposites on Ni‐foam substrate. The hydroxide nanocomposites thus derived show much enhanced overall electrochemical capacitance and improved stability of the alpha nickel hydroxide phase in alkaline solution. By adjusting the initial molar ratio between nickel and lanthanum nitrates from 1:0 to 1:2, the electrochemical behavior, such as specific capacitance, shows a dramatic change, while the nickel hydroxide phase evolves from beta nickel hydroxides (1:0) to alpha nickel hydroxide (1:2). Lanthanum hydroxide is not expected to contribute to the pseudocapacitance as it only shows a capacitance of &lt;10 F/g. The specific capacitance is increased from 970 F/g (Ni:La = 1:0) to 1874 F/g (Ni: La = 1:2) at the discharging current of 1 A/g. At high discharging currents (e.g. 10 A/g), the Ni:La = 1:2 sample can retain a capacitance of 1055 F/g. An excellent cycling performance is demonstrated for the Ni:La = 1:2 nanocomposite sample upon 2000 cycles at the discharging current density of 2 A/g, where the stability of alpha nickel hydroxide in the alkaline solution is improved. The low temperature hydrothermal method compares favorably to other previously documented preparation processes, such as chemical coprecipitation and electrochemical deposition, for lanthanum‐doped nickel hydroxides, where the specific capacitance is typically less than 1000 F/g (1 A/g).</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14546</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-01, Vol.100 (1), p.247-256
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1880006035
source Wiley Online Library Journals Frontfile Complete
subjects Capacitance
Discharge
Electrochemical analysis
hydrothermal process
Hydroxides
Lanthanum
Lanthanum Nickel hydroxides
nanocomposite
Nanocomposites
Nickel
Stability
supercapacitors
title Nickel and Lanthanum Hydroxide Nanocomposites with Much Improved Electrochemical Performance for Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%20and%20Lanthanum%20Hydroxide%20Nanocomposites%20with%20Much%20Improved%20Electrochemical%20Performance%20for%20Supercapacitors&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Ho,%20Kuan%E2%80%90Hung&rft.date=2017-01&rft.volume=100&rft.issue=1&rft.spage=247&rft.epage=256&rft.pages=247-256&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14546&rft_dat=%3Cproquest_cross%3E1880006035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857562960&rft_id=info:pmid/&rfr_iscdi=true