Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-09, Vol.94 (9), Article 094403
Hauptverfasser: Tanveer, M., Ruiz-Díaz, P., Pastor, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physical review. B
container_volume 94
creator Tanveer, M.
Ruiz-Díaz, P.
Pastor, G. M.
description The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation [Delta]E(q)as a function of the spin-density-wave vector q. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for [Delta]E(q), the local magnetic moments [mu] sub(i) at atom i, the magnetization-vector density m(r), and the local electronic density of states [rho] sub(i[sigma])([epsilon]). The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions J sub(ij) between the local magnetic moments [mu] sub(i) and [mu] sub(j) are derived by fitting the ab initio[Delta]E(q) to a classical 1D Heisenberg model. The dominant competing interactions J sub(ij) at the origin of the NC magnetic order are identified. The interplay between the various J sub(ij) is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
doi_str_mv 10.1103/PhysRevB.94.094403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880004072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880004072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-cf2fa4adabb45f549d0919681cf0baa16c47ba32374515481c2f45fee41209173</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpH-CUI5cU23EePkJVHlIlEIKz2ThrapQ4xXaL-u9xVeA0u6NPq50h5JLROWO0uH5e78ML7m7nUsypFIIWJ2TCRSVzKSt5-j-X9JzMQviklLKKyprKCXlf9qijH53VGbguG-DDYUzLxo8b9NFiyEaThY310B_E5R26YOM-_4YdZiFCTIh1WfRw8O3o8gFjgvUarAsX5MxAH3D2q1Pydrd8XTzkq6f7x8XNKte8oTHXhhsQ0EHbitKUQnZUMlk1TBvaArBKi7qFghe1KFkpks9NAhEF44msiym5Ot5Nj39tMUQ12KCx78HhuA2KNU3KLWjNE8qPqPZjCB6N2ng7gN8rRtWhUfXXqJJCHRstfgAI7mzF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880004072</pqid></control><display><type>article</type><title>Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains</title><source>American Physical Society Journals</source><creator>Tanveer, M. ; Ruiz-Díaz, P. ; Pastor, G. M.</creator><creatorcontrib>Tanveer, M. ; Ruiz-Díaz, P. ; Pastor, G. M.</creatorcontrib><description>The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation [Delta]E(q)as a function of the spin-density-wave vector q. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for [Delta]E(q), the local magnetic moments [mu] sub(i) at atom i, the magnetization-vector density m(r), and the local electronic density of states [rho] sub(i[sigma])([epsilon]). The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions J sub(ij) between the local magnetic moments [mu] sub(i) and [mu] sub(j) are derived by fitting the ab initio[Delta]E(q) to a classical 1D Heisenberg model. The dominant competing interactions J sub(ij) at the origin of the NC magnetic order are identified. The interplay between the various J sub(ij) is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.094403</identifier><language>eng</language><subject>Correlation ; Dispersion ; Electronics ; Exchange ; Magnetic properties ; Mathematical analysis ; Mathematical models ; Spin density waves</subject><ispartof>Physical review. B, 2016-09, Vol.94 (9), Article 094403</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-cf2fa4adabb45f549d0919681cf0baa16c47ba32374515481c2f45fee41209173</citedby><cites>FETCH-LOGICAL-c280t-cf2fa4adabb45f549d0919681cf0baa16c47ba32374515481c2f45fee41209173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Ruiz-Díaz, P.</creatorcontrib><creatorcontrib>Pastor, G. M.</creatorcontrib><title>Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains</title><title>Physical review. B</title><description>The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation [Delta]E(q)as a function of the spin-density-wave vector q. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for [Delta]E(q), the local magnetic moments [mu] sub(i) at atom i, the magnetization-vector density m(r), and the local electronic density of states [rho] sub(i[sigma])([epsilon]). The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions J sub(ij) between the local magnetic moments [mu] sub(i) and [mu] sub(j) are derived by fitting the ab initio[Delta]E(q) to a classical 1D Heisenberg model. The dominant competing interactions J sub(ij) at the origin of the NC magnetic order are identified. The interplay between the various J sub(ij) is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.</description><subject>Correlation</subject><subject>Dispersion</subject><subject>Electronics</subject><subject>Exchange</subject><subject>Magnetic properties</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spin density waves</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EElXpH-CUI5cU23EePkJVHlIlEIKz2ThrapQ4xXaL-u9xVeA0u6NPq50h5JLROWO0uH5e78ML7m7nUsypFIIWJ2TCRSVzKSt5-j-X9JzMQviklLKKyprKCXlf9qijH53VGbguG-DDYUzLxo8b9NFiyEaThY310B_E5R26YOM-_4YdZiFCTIh1WfRw8O3o8gFjgvUarAsX5MxAH3D2q1Pydrd8XTzkq6f7x8XNKte8oTHXhhsQ0EHbitKUQnZUMlk1TBvaArBKi7qFghe1KFkpks9NAhEF44msiym5Ot5Nj39tMUQ12KCx78HhuA2KNU3KLWjNE8qPqPZjCB6N2ng7gN8rRtWhUfXXqJJCHRstfgAI7mzF</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Tanveer, M.</creator><creator>Ruiz-Díaz, P.</creator><creator>Pastor, G. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160906</creationdate><title>Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains</title><author>Tanveer, M. ; Ruiz-Díaz, P. ; Pastor, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-cf2fa4adabb45f549d0919681cf0baa16c47ba32374515481c2f45fee41209173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Correlation</topic><topic>Dispersion</topic><topic>Electronics</topic><topic>Exchange</topic><topic>Magnetic properties</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spin density waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Ruiz-Díaz, P.</creatorcontrib><creatorcontrib>Pastor, G. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanveer, M.</au><au>Ruiz-Díaz, P.</au><au>Pastor, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains</atitle><jtitle>Physical review. B</jtitle><date>2016-09-06</date><risdate>2016</risdate><volume>94</volume><issue>9</issue><artnum>094403</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The electronic and magnetic properties of one-dimensional (1D) 3d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation [Delta]E(q)as a function of the spin-density-wave vector q. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for [Delta]E(q), the local magnetic moments [mu] sub(i) at atom i, the magnetization-vector density m(r), and the local electronic density of states [rho] sub(i[sigma])([epsilon]). The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions J sub(ij) between the local magnetic moments [mu] sub(i) and [mu] sub(j) are derived by fitting the ab initio[Delta]E(q) to a classical 1D Heisenberg model. The dominant competing interactions J sub(ij) at the origin of the NC magnetic order are identified. The interplay between the various J sub(ij) is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.</abstract><doi>10.1103/PhysRevB.94.094403</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-09, Vol.94 (9), Article 094403
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1880004072
source American Physical Society Journals
subjects Correlation
Dispersion
Electronics
Exchange
Magnetic properties
Mathematical analysis
Mathematical models
Spin density waves
title Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20magnetic%20properties%20of%20spiral%20spin-density-wave%20states%20in%20transition-metal%20chains&rft.jtitle=Physical%20review.%20B&rft.au=Tanveer,%20M.&rft.date=2016-09-06&rft.volume=94&rft.issue=9&rft.artnum=094403&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.094403&rft_dat=%3Cproquest_cross%3E1880004072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880004072&rft_id=info:pmid/&rfr_iscdi=true