Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting

[Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2017-01, Vol.86, p.154-161
Hauptverfasser: Zhu, Huihui, Li, Rong, Wu, Xingle, Chen, Ke, Che, Jiangning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue
container_start_page 154
container_title European polymer journal
container_volume 86
creator Zhu, Huihui
Li, Rong
Wu, Xingle
Chen, Ke
Che, Jiangning
description [Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree. Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.
doi_str_mv 10.1016/j.eurpolymj.2016.11.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880003193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305716309910</els_id><sourcerecordid>1880003193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</originalsourceid><addsrcrecordid>eNqFUU1rGzEQFSWBOk5_QwS99LJraaX90NGYJC0Y2kN7FrPaUaztWnKldYL76yPj0kMuOQ0z781j3jxC7jgrOePNaizxGA9hOu3HssqDkvOSVeIDWfCuFQVXsr4iC8a4LASr24_kJqWRMdaKRizIbhP8HMM0QT8htdBHZ2B2wVPwAzU7iGBmjO7vZRgs3Z2GGA47NzlDf2y2q5cQJvobYyZ46sEHj3Oi_YnihCZL5zYjT7fk2sKU8NO_uiS_Hu5_br4W2--P3zbrbWEkF3NhagZSSWWh61uwveIVAjdMSehroxQTZrCArFe2aUzFmtpiJSRUzQCyY7VYki8X3UMMf46YZr13yWA26DEck-Zdl80LrkSmfn5DHcMx-nydznAl6lrIs2B7YZkYUopo9SG6PcST5kyfE9Cj_p-APiegOdc5gby5vmxi9vvsMOpkHHqDg4v5NXoI7l2NVx5Dlf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932355345</pqid></control><display><type>article</type><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</creator><creatorcontrib>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</creatorcontrib><description>[Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree. Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2016.11.023</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Contact ; Contact angle ; Cysteine ; Extraction ; Extraction processes ; Hydrophilic ; Keratin ; Keratins ; Mats ; Nanofibers ; Nanonet ; Nanostructure ; PCL ; Raw materials ; Relative humidity ; Spinning ; Tissue engineering ; Wastes ; Wool ; Wool keratin</subject><ispartof>European polymer journal, 2017-01, Vol.86, p.154-161</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</citedby><cites>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305716309910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Wu, Xingle</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Che, Jiangning</creatorcontrib><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><title>European polymer journal</title><description>[Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree. Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</description><subject>Contact</subject><subject>Contact angle</subject><subject>Cysteine</subject><subject>Extraction</subject><subject>Extraction processes</subject><subject>Hydrophilic</subject><subject>Keratin</subject><subject>Keratins</subject><subject>Mats</subject><subject>Nanofibers</subject><subject>Nanonet</subject><subject>Nanostructure</subject><subject>PCL</subject><subject>Raw materials</subject><subject>Relative humidity</subject><subject>Spinning</subject><subject>Tissue engineering</subject><subject>Wastes</subject><subject>Wool</subject><subject>Wool keratin</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1rGzEQFSWBOk5_QwS99LJraaX90NGYJC0Y2kN7FrPaUaztWnKldYL76yPj0kMuOQ0z781j3jxC7jgrOePNaizxGA9hOu3HssqDkvOSVeIDWfCuFQVXsr4iC8a4LASr24_kJqWRMdaKRizIbhP8HMM0QT8htdBHZ2B2wVPwAzU7iGBmjO7vZRgs3Z2GGA47NzlDf2y2q5cQJvobYyZ46sEHj3Oi_YnihCZL5zYjT7fk2sKU8NO_uiS_Hu5_br4W2--P3zbrbWEkF3NhagZSSWWh61uwveIVAjdMSehroxQTZrCArFe2aUzFmtpiJSRUzQCyY7VYki8X3UMMf46YZr13yWA26DEck-Zdl80LrkSmfn5DHcMx-nydznAl6lrIs2B7YZkYUopo9SG6PcST5kyfE9Cj_p-APiegOdc5gby5vmxi9vvsMOpkHHqDg4v5NXoI7l2NVx5Dlf4</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Zhu, Huihui</creator><creator>Li, Rong</creator><creator>Wu, Xingle</creator><creator>Chen, Ke</creator><creator>Che, Jiangning</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201701</creationdate><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><author>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Contact</topic><topic>Contact angle</topic><topic>Cysteine</topic><topic>Extraction</topic><topic>Extraction processes</topic><topic>Hydrophilic</topic><topic>Keratin</topic><topic>Keratins</topic><topic>Mats</topic><topic>Nanofibers</topic><topic>Nanonet</topic><topic>Nanostructure</topic><topic>PCL</topic><topic>Raw materials</topic><topic>Relative humidity</topic><topic>Spinning</topic><topic>Tissue engineering</topic><topic>Wastes</topic><topic>Wool</topic><topic>Wool keratin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Wu, Xingle</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Che, Jiangning</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huihui</au><au>Li, Rong</au><au>Wu, Xingle</au><au>Chen, Ke</au><au>Che, Jiangning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</atitle><jtitle>European polymer journal</jtitle><date>2017-01</date><risdate>2017</risdate><volume>86</volume><spage>154</spage><epage>161</epage><pages>154-161</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree. Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2016.11.023</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2017-01, Vol.86, p.154-161
issn 0014-3057
1873-1945
language eng
recordid cdi_proquest_miscellaneous_1880003193
source Elsevier ScienceDirect Journals
subjects Contact
Contact angle
Cysteine
Extraction
Extraction processes
Hydrophilic
Keratin
Keratins
Mats
Nanofibers
Nanonet
Nanostructure
PCL
Raw materials
Relative humidity
Spinning
Tissue engineering
Wastes
Wool
Wool keratin
title Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20fabrication%20and%20characterization%20of%20hydrophilic%20PCL/wool%20keratin%20nanonets%20by%20electronetting&rft.jtitle=European%20polymer%20journal&rft.au=Zhu,%20Huihui&rft.date=2017-01&rft.volume=86&rft.spage=154&rft.epage=161&rft.pages=154-161&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2016.11.023&rft_dat=%3Cproquest_cross%3E1880003193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932355345&rft_id=info:pmid/&rft_els_id=S0014305716309910&rfr_iscdi=true