Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting
[Display omitted] •Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2017-01, Vol.86, p.154-161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | |
container_start_page | 154 |
container_title | European polymer journal |
container_volume | 86 |
creator | Zhu, Huihui Li, Rong Wu, Xingle Chen, Ke Che, Jiangning |
description | [Display omitted]
•Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree.
Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers. |
doi_str_mv | 10.1016/j.eurpolymj.2016.11.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880003193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305716309910</els_id><sourcerecordid>1880003193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</originalsourceid><addsrcrecordid>eNqFUU1rGzEQFSWBOk5_QwS99LJraaX90NGYJC0Y2kN7FrPaUaztWnKldYL76yPj0kMuOQ0z781j3jxC7jgrOePNaizxGA9hOu3HssqDkvOSVeIDWfCuFQVXsr4iC8a4LASr24_kJqWRMdaKRizIbhP8HMM0QT8htdBHZ2B2wVPwAzU7iGBmjO7vZRgs3Z2GGA47NzlDf2y2q5cQJvobYyZ46sEHj3Oi_YnihCZL5zYjT7fk2sKU8NO_uiS_Hu5_br4W2--P3zbrbWEkF3NhagZSSWWh61uwveIVAjdMSehroxQTZrCArFe2aUzFmtpiJSRUzQCyY7VYki8X3UMMf46YZr13yWA26DEck-Zdl80LrkSmfn5DHcMx-nydznAl6lrIs2B7YZkYUopo9SG6PcST5kyfE9Cj_p-APiegOdc5gby5vmxi9vvsMOpkHHqDg4v5NXoI7l2NVx5Dlf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932355345</pqid></control><display><type>article</type><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</creator><creatorcontrib>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</creatorcontrib><description>[Display omitted]
•Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree.
Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2016.11.023</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Contact ; Contact angle ; Cysteine ; Extraction ; Extraction processes ; Hydrophilic ; Keratin ; Keratins ; Mats ; Nanofibers ; Nanonet ; Nanostructure ; PCL ; Raw materials ; Relative humidity ; Spinning ; Tissue engineering ; Wastes ; Wool ; Wool keratin</subject><ispartof>European polymer journal, 2017-01, Vol.86, p.154-161</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</citedby><cites>FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305716309910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Wu, Xingle</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Che, Jiangning</creatorcontrib><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><title>European polymer journal</title><description>[Display omitted]
•Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree.
Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</description><subject>Contact</subject><subject>Contact angle</subject><subject>Cysteine</subject><subject>Extraction</subject><subject>Extraction processes</subject><subject>Hydrophilic</subject><subject>Keratin</subject><subject>Keratins</subject><subject>Mats</subject><subject>Nanofibers</subject><subject>Nanonet</subject><subject>Nanostructure</subject><subject>PCL</subject><subject>Raw materials</subject><subject>Relative humidity</subject><subject>Spinning</subject><subject>Tissue engineering</subject><subject>Wastes</subject><subject>Wool</subject><subject>Wool keratin</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1rGzEQFSWBOk5_QwS99LJraaX90NGYJC0Y2kN7FrPaUaztWnKldYL76yPj0kMuOQ0z781j3jxC7jgrOePNaizxGA9hOu3HssqDkvOSVeIDWfCuFQVXsr4iC8a4LASr24_kJqWRMdaKRizIbhP8HMM0QT8htdBHZ2B2wVPwAzU7iGBmjO7vZRgs3Z2GGA47NzlDf2y2q5cQJvobYyZ46sEHj3Oi_YnihCZL5zYjT7fk2sKU8NO_uiS_Hu5_br4W2--P3zbrbWEkF3NhagZSSWWh61uwveIVAjdMSehroxQTZrCArFe2aUzFmtpiJSRUzQCyY7VYki8X3UMMf46YZr13yWA26DEck-Zdl80LrkSmfn5DHcMx-nydznAl6lrIs2B7YZkYUopo9SG6PcST5kyfE9Cj_p-APiegOdc5gby5vmxi9vvsMOpkHHqDg4v5NXoI7l2NVx5Dlf4</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Zhu, Huihui</creator><creator>Li, Rong</creator><creator>Wu, Xingle</creator><creator>Chen, Ke</creator><creator>Che, Jiangning</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201701</creationdate><title>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</title><author>Zhu, Huihui ; Li, Rong ; Wu, Xingle ; Chen, Ke ; Che, Jiangning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c50a4949fa8b7afb912ea1c094ab5c9903cdfae0b9f66c2065fe234a26da48053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Contact</topic><topic>Contact angle</topic><topic>Cysteine</topic><topic>Extraction</topic><topic>Extraction processes</topic><topic>Hydrophilic</topic><topic>Keratin</topic><topic>Keratins</topic><topic>Mats</topic><topic>Nanofibers</topic><topic>Nanonet</topic><topic>Nanostructure</topic><topic>PCL</topic><topic>Raw materials</topic><topic>Relative humidity</topic><topic>Spinning</topic><topic>Tissue engineering</topic><topic>Wastes</topic><topic>Wool</topic><topic>Wool keratin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huihui</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Wu, Xingle</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Che, Jiangning</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huihui</au><au>Li, Rong</au><au>Wu, Xingle</au><au>Chen, Ke</au><au>Che, Jiangning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting</atitle><jtitle>European polymer journal</jtitle><date>2017-01</date><risdate>2017</risdate><volume>86</volume><spage>154</spage><epage>161</epage><pages>154-161</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted]
•Keratin extracted from wool by l-cysteine redox method.•One-step electronetting of Poly (ε-caprolactone) (PCL) and wool keratin.•Nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm.•With the addition of keratin, the water contact angles decreased around 20–50 degree.
Keratin wastes are an important source of renewable raw material. Regenerated wool keratin is a promising natural material for tissue engineering. In the present study, l-cysteine redox method was performed to extract keratin from wool and the nanonets fabricated by one-step electrospinning of Poly (ε-caprolactone) (PCL) and wool keratin were presented here. The resulting nanofiber mats showed two parts of structures: randomly oriented nanofibers in diameter of 299–624nm and dense nanonets in diameter of 25±5nm. The forming and coverage of nanonets was mainly affected by the addition of wool keratin and the relative humidity. With the addition of keratin, the hydrophilic nanonets can be successfully fabricated, where the water contact angles decreased around 20–50 degree compared to that of the pure PCL nanofibers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2016.11.023</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3057 |
ispartof | European polymer journal, 2017-01, Vol.86, p.154-161 |
issn | 0014-3057 1873-1945 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880003193 |
source | Elsevier ScienceDirect Journals |
subjects | Contact Contact angle Cysteine Extraction Extraction processes Hydrophilic Keratin Keratins Mats Nanofibers Nanonet Nanostructure PCL Raw materials Relative humidity Spinning Tissue engineering Wastes Wool Wool keratin |
title | Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20fabrication%20and%20characterization%20of%20hydrophilic%20PCL/wool%20keratin%20nanonets%20by%20electronetting&rft.jtitle=European%20polymer%20journal&rft.au=Zhu,%20Huihui&rft.date=2017-01&rft.volume=86&rft.spage=154&rft.epage=161&rft.pages=154-161&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2016.11.023&rft_dat=%3Cproquest_cross%3E1880003193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932355345&rft_id=info:pmid/&rft_els_id=S0014305716309910&rfr_iscdi=true |