Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes
Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress gen...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2017-01, Vol.38 (2), p.278-286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 2 |
container_start_page | 278 |
container_title | Electrophoresis |
container_volume | 38 |
creator | Chaudhuri, Joydip Timung, Seim Dandamudi, Chola Bhargava Mandal, Tapas Kumar Bandyopadhyay, Dipankar |
description | Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput. |
doi_str_mv | 10.1002/elps.201600276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880001795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826725492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</originalsourceid><addsrcrecordid>eNqNkc1rVDEUxYNY7FjdupSAGxd903wnz10Z21oYqPixDnnJfW1K3ofJG2T-e1Om7cKNri4XfvdczjkIvaNkTQlhZ5DmsmaEqrpo9QKtqGSsYcrwl2hFqOYNMVweo9el3BNCRCvEK3TMtOBKELZC8XMsPsMCGBL4JUeP-wgp4AFCdAsEHPI0J1hwmVNcljje4jjiIfo8-Ts3jpDKJ3wZS4nTeIo3rngX4BS7MeBvbp8g3t7hYQpQ3qCj3qUCbx_nCfp5efFj86XZ3lxdb863jRfcyMb1UpvAuaSd0sF1RHtNiCHBO9l53fKWCU-VYt5I0bZBeE96oK4znFJqOn6CPh505zz92kFZ7FAtQkpuhGlXLDWmBkF1K_8DZUqz-oZV9MNf6P20y2M1YmnLiNBGaV2p9YGq6ZSSobdzjoPLe0uJfejLPvRln_uqB-8fZXddTfwZfyqoAuIA_I4J9v-Qsxfbr99lyyT_AzgUn_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920478677</pqid></control><display><type>article</type><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</creator><creatorcontrib>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</creatorcontrib><description>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600276</identifier><identifier>PMID: 27436402</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arrays ; Cascades ; Computer Simulation ; Deformation ; Droplets ; Electric field ; Electric fields ; Electricity ; Electrodes ; Fission ; Methodology ; Microchannel ; Microchannels ; Microfluidic Analytical Techniques ; Miniaturization ; Models, Theoretical ; Momentum transfer ; Multiphase flow ; Silicone Oils - chemistry ; Splitting ; Surface tension ; Water - chemistry ; Water flow</subject><ispartof>Electrophoresis, 2017-01, Vol.38 (2), p.278-286</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</citedby><cites>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201600276$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201600276$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27436402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhuri, Joydip</creatorcontrib><creatorcontrib>Timung, Seim</creatorcontrib><creatorcontrib>Dandamudi, Chola Bhargava</creatorcontrib><creatorcontrib>Mandal, Tapas Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</description><subject>Arrays</subject><subject>Cascades</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Droplets</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Fission</subject><subject>Methodology</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques</subject><subject>Miniaturization</subject><subject>Models, Theoretical</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><subject>Silicone Oils - chemistry</subject><subject>Splitting</subject><subject>Surface tension</subject><subject>Water - chemistry</subject><subject>Water flow</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1rVDEUxYNY7FjdupSAGxd903wnz10Z21oYqPixDnnJfW1K3ofJG2T-e1Om7cKNri4XfvdczjkIvaNkTQlhZ5DmsmaEqrpo9QKtqGSsYcrwl2hFqOYNMVweo9el3BNCRCvEK3TMtOBKELZC8XMsPsMCGBL4JUeP-wgp4AFCdAsEHPI0J1hwmVNcljje4jjiIfo8-Ts3jpDKJ3wZS4nTeIo3rngX4BS7MeBvbp8g3t7hYQpQ3qCj3qUCbx_nCfp5efFj86XZ3lxdb863jRfcyMb1UpvAuaSd0sF1RHtNiCHBO9l53fKWCU-VYt5I0bZBeE96oK4znFJqOn6CPh505zz92kFZ7FAtQkpuhGlXLDWmBkF1K_8DZUqz-oZV9MNf6P20y2M1YmnLiNBGaV2p9YGq6ZSSobdzjoPLe0uJfejLPvRln_uqB-8fZXddTfwZfyqoAuIA_I4J9v-Qsxfbr99lyyT_AzgUn_M</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Chaudhuri, Joydip</creator><creator>Timung, Seim</creator><creator>Dandamudi, Chola Bhargava</creator><creator>Mandal, Tapas Kumar</creator><creator>Bandyopadhyay, Dipankar</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><author>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>Cascades</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Droplets</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Fission</topic><topic>Methodology</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques</topic><topic>Miniaturization</topic><topic>Models, Theoretical</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><topic>Silicone Oils - chemistry</topic><topic>Splitting</topic><topic>Surface tension</topic><topic>Water - chemistry</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Joydip</creatorcontrib><creatorcontrib>Timung, Seim</creatorcontrib><creatorcontrib>Dandamudi, Chola Bhargava</creatorcontrib><creatorcontrib>Mandal, Tapas Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Joydip</au><au>Timung, Seim</au><au>Dandamudi, Chola Bhargava</au><au>Mandal, Tapas Kumar</au><au>Bandyopadhyay, Dipankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-01</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>278</spage><epage>286</epage><pages>278-286</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27436402</pmid><doi>10.1002/elps.201600276</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2017-01, Vol.38 (2), p.278-286 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880001795 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Arrays Cascades Computer Simulation Deformation Droplets Electric field Electric fields Electricity Electrodes Fission Methodology Microchannel Microchannels Microfluidic Analytical Techniques Miniaturization Models, Theoretical Momentum transfer Multiphase flow Silicone Oils - chemistry Splitting Surface tension Water - chemistry Water flow |
title | Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20electric%20field%20mediated%20droplet%20splitting%20in%20microchannels:%20Fission,%20Cascade,%20and%20Rayleigh%20modes&rft.jtitle=Electrophoresis&rft.au=Chaudhuri,%20Joydip&rft.date=2017-01&rft.volume=38&rft.issue=2&rft.spage=278&rft.epage=286&rft.pages=278-286&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600276&rft_dat=%3Cproquest_cross%3E1826725492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920478677&rft_id=info:pmid/27436402&rfr_iscdi=true |