Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes

Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2017-01, Vol.38 (2), p.278-286
Hauptverfasser: Chaudhuri, Joydip, Timung, Seim, Dandamudi, Chola Bhargava, Mandal, Tapas Kumar, Bandyopadhyay, Dipankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 278
container_title Electrophoresis
container_volume 38
creator Chaudhuri, Joydip
Timung, Seim
Dandamudi, Chola Bhargava
Mandal, Tapas Kumar
Bandyopadhyay, Dipankar
description Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.
doi_str_mv 10.1002/elps.201600276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880001795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826725492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</originalsourceid><addsrcrecordid>eNqNkc1rVDEUxYNY7FjdupSAGxd903wnz10Z21oYqPixDnnJfW1K3ofJG2T-e1Om7cKNri4XfvdczjkIvaNkTQlhZ5DmsmaEqrpo9QKtqGSsYcrwl2hFqOYNMVweo9el3BNCRCvEK3TMtOBKELZC8XMsPsMCGBL4JUeP-wgp4AFCdAsEHPI0J1hwmVNcljje4jjiIfo8-Ts3jpDKJ3wZS4nTeIo3rngX4BS7MeBvbp8g3t7hYQpQ3qCj3qUCbx_nCfp5efFj86XZ3lxdb863jRfcyMb1UpvAuaSd0sF1RHtNiCHBO9l53fKWCU-VYt5I0bZBeE96oK4znFJqOn6CPh505zz92kFZ7FAtQkpuhGlXLDWmBkF1K_8DZUqz-oZV9MNf6P20y2M1YmnLiNBGaV2p9YGq6ZSSobdzjoPLe0uJfejLPvRln_uqB-8fZXddTfwZfyqoAuIA_I4J9v-Qsxfbr99lyyT_AzgUn_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920478677</pqid></control><display><type>article</type><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</creator><creatorcontrib>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</creatorcontrib><description>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600276</identifier><identifier>PMID: 27436402</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arrays ; Cascades ; Computer Simulation ; Deformation ; Droplets ; Electric field ; Electric fields ; Electricity ; Electrodes ; Fission ; Methodology ; Microchannel ; Microchannels ; Microfluidic Analytical Techniques ; Miniaturization ; Models, Theoretical ; Momentum transfer ; Multiphase flow ; Silicone Oils - chemistry ; Splitting ; Surface tension ; Water - chemistry ; Water flow</subject><ispartof>Electrophoresis, 2017-01, Vol.38 (2), p.278-286</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</citedby><cites>FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201600276$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201600276$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27436402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhuri, Joydip</creatorcontrib><creatorcontrib>Timung, Seim</creatorcontrib><creatorcontrib>Dandamudi, Chola Bhargava</creatorcontrib><creatorcontrib>Mandal, Tapas Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</description><subject>Arrays</subject><subject>Cascades</subject><subject>Computer Simulation</subject><subject>Deformation</subject><subject>Droplets</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Fission</subject><subject>Methodology</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques</subject><subject>Miniaturization</subject><subject>Models, Theoretical</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><subject>Silicone Oils - chemistry</subject><subject>Splitting</subject><subject>Surface tension</subject><subject>Water - chemistry</subject><subject>Water flow</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1rVDEUxYNY7FjdupSAGxd903wnz10Z21oYqPixDnnJfW1K3ofJG2T-e1Om7cKNri4XfvdczjkIvaNkTQlhZ5DmsmaEqrpo9QKtqGSsYcrwl2hFqOYNMVweo9el3BNCRCvEK3TMtOBKELZC8XMsPsMCGBL4JUeP-wgp4AFCdAsEHPI0J1hwmVNcljje4jjiIfo8-Ts3jpDKJ3wZS4nTeIo3rngX4BS7MeBvbp8g3t7hYQpQ3qCj3qUCbx_nCfp5efFj86XZ3lxdb863jRfcyMb1UpvAuaSd0sF1RHtNiCHBO9l53fKWCU-VYt5I0bZBeE96oK4znFJqOn6CPh505zz92kFZ7FAtQkpuhGlXLDWmBkF1K_8DZUqz-oZV9MNf6P20y2M1YmnLiNBGaV2p9YGq6ZSSobdzjoPLe0uJfejLPvRln_uqB-8fZXddTfwZfyqoAuIA_I4J9v-Qsxfbr99lyyT_AzgUn_M</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Chaudhuri, Joydip</creator><creator>Timung, Seim</creator><creator>Dandamudi, Chola Bhargava</creator><creator>Mandal, Tapas Kumar</creator><creator>Bandyopadhyay, Dipankar</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</title><author>Chaudhuri, Joydip ; Timung, Seim ; Dandamudi, Chola Bhargava ; Mandal, Tapas Kumar ; Bandyopadhyay, Dipankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-af578d3351b67dab07c70080dca5bc793924c1662c85499d4cc0fe1ab831118b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>Cascades</topic><topic>Computer Simulation</topic><topic>Deformation</topic><topic>Droplets</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Fission</topic><topic>Methodology</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques</topic><topic>Miniaturization</topic><topic>Models, Theoretical</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><topic>Silicone Oils - chemistry</topic><topic>Splitting</topic><topic>Surface tension</topic><topic>Water - chemistry</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Joydip</creatorcontrib><creatorcontrib>Timung, Seim</creatorcontrib><creatorcontrib>Dandamudi, Chola Bhargava</creatorcontrib><creatorcontrib>Mandal, Tapas Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Joydip</au><au>Timung, Seim</au><au>Dandamudi, Chola Bhargava</au><au>Mandal, Tapas Kumar</au><au>Bandyopadhyay, Dipankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-01</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>278</spage><epage>286</epage><pages>278-286</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non‐invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil‐water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil–water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one‐step method to form water‐in‐oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27436402</pmid><doi>10.1002/elps.201600276</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2017-01, Vol.38 (2), p.278-286
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_1880001795
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Arrays
Cascades
Computer Simulation
Deformation
Droplets
Electric field
Electric fields
Electricity
Electrodes
Fission
Methodology
Microchannel
Microchannels
Microfluidic Analytical Techniques
Miniaturization
Models, Theoretical
Momentum transfer
Multiphase flow
Silicone Oils - chemistry
Splitting
Surface tension
Water - chemistry
Water flow
title Discrete electric field mediated droplet splitting in microchannels: Fission, Cascade, and Rayleigh modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20electric%20field%20mediated%20droplet%20splitting%20in%20microchannels:%20Fission,%20Cascade,%20and%20Rayleigh%20modes&rft.jtitle=Electrophoresis&rft.au=Chaudhuri,%20Joydip&rft.date=2017-01&rft.volume=38&rft.issue=2&rft.spage=278&rft.epage=286&rft.pages=278-286&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600276&rft_dat=%3Cproquest_cross%3E1826725492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920478677&rft_id=info:pmid/27436402&rfr_iscdi=true