Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating
Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2014-04, Vol.557, p.10-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Thin solid films |
container_volume | 557 |
creator | Abe, Yusuke Sakuraba, Masao Murota, Junichi |
description | Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment.
•Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration. |
doi_str_mv | 10.1016/j.tsf.2013.08.118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880000524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013014314</els_id><sourcerecordid>1880000524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiNEJZaWB-DmC1I5JIwdJ-sVp7YqbKVKPRTOlmOPd71K4mA7bffGO_QpeC2eBC9bceTi8eGfb2b-vyjeU6go0PbTrkrRVgxoXYGoKBWvigUVy1XJljV9XSwAOJQtrOBN8TbGHQBQxupF8et6ckk9OdWTTfCPaUu8JZel8RMacu-IH_N7TgE-km5PsEedgh9Lvde9__sLGP2oRo3kIpCpV3FQRG9xcDojH9TkAzE4-eiSyyw3EpWBa_775_MlW7e5rBnZqEgG95TmgOTRpa2fE4lzF1NQCckWVXLj5qw4saqP-O6lnhbfv1x_u1qXt3dfb64ubkvNlpSXzDa16RhwIVrNLZims4KtWG2wW2olqFHYoWl0Yxumsit113JYUUGbtra6rU-L8yN3Cv7HjDHJwUWNfa9G9HOUVIjsHjSMZyk9SnXwMQa0cgpuUGEvKchDLHIncyzyEIsEIXMsuefDC17FbJEN2TsX_zUywVnN-WGNz0cd5lsfHAYZtcPss3EhhyCNd_-Z8gezA6Uy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880000524</pqid></control><display><type>article</type><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</creator><creatorcontrib>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</creatorcontrib><description>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment.
•Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.08.118</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boron ; Carrier density ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Doping ; Electrical activity ; Electrical resistivity ; Epitaxial growth ; Exact sciences and technology ; Gas mixtures ; Heat treatment ; Infrared spectroscopy ; Ion and electron beam-assisted deposition; ion plating ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microwaves ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Plasma-based ion implantation and deposition ; Resistivity ; Silicon ; Silicon substrates ; Theory and models of film growth</subject><ispartof>Thin solid films, 2014-04, Vol.557, p.10-13</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</citedby><cites>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2013.08.118$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28423446$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Yusuke</creatorcontrib><creatorcontrib>Sakuraba, Masao</creatorcontrib><creatorcontrib>Murota, Junichi</creatorcontrib><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><title>Thin solid films</title><description>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment.
•Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</description><subject>Boron</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Doping</subject><subject>Electrical activity</subject><subject>Electrical resistivity</subject><subject>Epitaxial growth</subject><subject>Exact sciences and technology</subject><subject>Gas mixtures</subject><subject>Heat treatment</subject><subject>Infrared spectroscopy</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microwaves</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Resistivity</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Theory and models of film growth</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiNEJZaWB-DmC1I5JIwdJ-sVp7YqbKVKPRTOlmOPd71K4mA7bffGO_QpeC2eBC9bceTi8eGfb2b-vyjeU6go0PbTrkrRVgxoXYGoKBWvigUVy1XJljV9XSwAOJQtrOBN8TbGHQBQxupF8et6ckk9OdWTTfCPaUu8JZel8RMacu-IH_N7TgE-km5PsEedgh9Lvde9__sLGP2oRo3kIpCpV3FQRG9xcDojH9TkAzE4-eiSyyw3EpWBa_775_MlW7e5rBnZqEgG95TmgOTRpa2fE4lzF1NQCckWVXLj5qw4saqP-O6lnhbfv1x_u1qXt3dfb64ubkvNlpSXzDa16RhwIVrNLZims4KtWG2wW2olqFHYoWl0Yxumsit113JYUUGbtra6rU-L8yN3Cv7HjDHJwUWNfa9G9HOUVIjsHjSMZyk9SnXwMQa0cgpuUGEvKchDLHIncyzyEIsEIXMsuefDC17FbJEN2TsX_zUywVnN-WGNz0cd5lsfHAYZtcPss3EhhyCNd_-Z8gezA6Uy</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Abe, Yusuke</creator><creator>Sakuraba, Masao</creator><creator>Murota, Junichi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><author>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boron</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Doping</topic><topic>Electrical activity</topic><topic>Electrical resistivity</topic><topic>Epitaxial growth</topic><topic>Exact sciences and technology</topic><topic>Gas mixtures</topic><topic>Heat treatment</topic><topic>Infrared spectroscopy</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microwaves</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Resistivity</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Yusuke</creatorcontrib><creatorcontrib>Sakuraba, Masao</creatorcontrib><creatorcontrib>Murota, Junichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Yusuke</au><au>Sakuraba, Masao</au><au>Murota, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</atitle><jtitle>Thin solid films</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>557</volume><spage>10</spage><epage>13</epage><pages>10-13</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment.
•Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.08.118</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2014-04, Vol.557, p.10-13 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880000524 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boron Carrier density Chemical vapor deposition Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Doping Electrical activity Electrical resistivity Epitaxial growth Exact sciences and technology Gas mixtures Heat treatment Infrared spectroscopy Ion and electron beam-assisted deposition ion plating Materials science Methods of deposition of films and coatings film growth and epitaxy Microwaves Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma applications Plasma-based ion implantation and deposition Resistivity Silicon Silicon substrates Theory and models of film growth |
title | Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20B-doped%20Si%20on%20Si(100)%20by%20electron-cyclotron-resonance%20Ar%20plasma%20chemical%20vapor%20deposition%20in%20a%20SiH4%E2%80%93B2H6%E2%80%93H2%20gas%20mixture%20without%20substrate%20heating&rft.jtitle=Thin%20solid%20films&rft.au=Abe,%20Yusuke&rft.date=2014-04-01&rft.volume=557&rft.spage=10&rft.epage=13&rft.pages=10-13&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.08.118&rft_dat=%3Cproquest_cross%3E1880000524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880000524&rft_id=info:pmid/&rft_els_id=S0040609013014314&rfr_iscdi=true |