Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating

Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2014-04, Vol.557, p.10-13
Hauptverfasser: Abe, Yusuke, Sakuraba, Masao, Murota, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 10
container_title Thin solid films
container_volume 557
creator Abe, Yusuke
Sakuraba, Masao
Murota, Junichi
description Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment. •Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.
doi_str_mv 10.1016/j.tsf.2013.08.118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880000524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013014314</els_id><sourcerecordid>1880000524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiNEJZaWB-DmC1I5JIwdJ-sVp7YqbKVKPRTOlmOPd71K4mA7bffGO_QpeC2eBC9bceTi8eGfb2b-vyjeU6go0PbTrkrRVgxoXYGoKBWvigUVy1XJljV9XSwAOJQtrOBN8TbGHQBQxupF8et6ckk9OdWTTfCPaUu8JZel8RMacu-IH_N7TgE-km5PsEedgh9Lvde9__sLGP2oRo3kIpCpV3FQRG9xcDojH9TkAzE4-eiSyyw3EpWBa_775_MlW7e5rBnZqEgG95TmgOTRpa2fE4lzF1NQCckWVXLj5qw4saqP-O6lnhbfv1x_u1qXt3dfb64ubkvNlpSXzDa16RhwIVrNLZims4KtWG2wW2olqFHYoWl0Yxumsit113JYUUGbtra6rU-L8yN3Cv7HjDHJwUWNfa9G9HOUVIjsHjSMZyk9SnXwMQa0cgpuUGEvKchDLHIncyzyEIsEIXMsuefDC17FbJEN2TsX_zUywVnN-WGNz0cd5lsfHAYZtcPss3EhhyCNd_-Z8gezA6Uy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880000524</pqid></control><display><type>article</type><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</creator><creatorcontrib>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</creatorcontrib><description>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment. •Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.08.118</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boron ; Carrier density ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Doping ; Electrical activity ; Electrical resistivity ; Epitaxial growth ; Exact sciences and technology ; Gas mixtures ; Heat treatment ; Infrared spectroscopy ; Ion and electron beam-assisted deposition; ion plating ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microwaves ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; Plasma-based ion implantation and deposition ; Resistivity ; Silicon ; Silicon substrates ; Theory and models of film growth</subject><ispartof>Thin solid films, 2014-04, Vol.557, p.10-13</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</citedby><cites>FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2013.08.118$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28423446$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Yusuke</creatorcontrib><creatorcontrib>Sakuraba, Masao</creatorcontrib><creatorcontrib>Murota, Junichi</creatorcontrib><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><title>Thin solid films</title><description>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment. •Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</description><subject>Boron</subject><subject>Carrier density</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Doping</subject><subject>Electrical activity</subject><subject>Electrical resistivity</subject><subject>Epitaxial growth</subject><subject>Exact sciences and technology</subject><subject>Gas mixtures</subject><subject>Heat treatment</subject><subject>Infrared spectroscopy</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microwaves</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Resistivity</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Theory and models of film growth</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiNEJZaWB-DmC1I5JIwdJ-sVp7YqbKVKPRTOlmOPd71K4mA7bffGO_QpeC2eBC9bceTi8eGfb2b-vyjeU6go0PbTrkrRVgxoXYGoKBWvigUVy1XJljV9XSwAOJQtrOBN8TbGHQBQxupF8et6ckk9OdWTTfCPaUu8JZel8RMacu-IH_N7TgE-km5PsEedgh9Lvde9__sLGP2oRo3kIpCpV3FQRG9xcDojH9TkAzE4-eiSyyw3EpWBa_775_MlW7e5rBnZqEgG95TmgOTRpa2fE4lzF1NQCckWVXLj5qw4saqP-O6lnhbfv1x_u1qXt3dfb64ubkvNlpSXzDa16RhwIVrNLZims4KtWG2wW2olqFHYoWl0Yxumsit113JYUUGbtra6rU-L8yN3Cv7HjDHJwUWNfa9G9HOUVIjsHjSMZyk9SnXwMQa0cgpuUGEvKchDLHIncyzyEIsEIXMsuefDC17FbJEN2TsX_zUywVnN-WGNz0cd5lsfHAYZtcPss3EhhyCNd_-Z8gezA6Uy</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Abe, Yusuke</creator><creator>Sakuraba, Masao</creator><creator>Murota, Junichi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</title><author>Abe, Yusuke ; Sakuraba, Masao ; Murota, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2714-2f53db204886c4f0d5bf82923deb7ca81daebed5c5f52a0403b6409181563fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boron</topic><topic>Carrier density</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Doping</topic><topic>Electrical activity</topic><topic>Electrical resistivity</topic><topic>Epitaxial growth</topic><topic>Exact sciences and technology</topic><topic>Gas mixtures</topic><topic>Heat treatment</topic><topic>Infrared spectroscopy</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microwaves</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Resistivity</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Yusuke</creatorcontrib><creatorcontrib>Sakuraba, Masao</creatorcontrib><creatorcontrib>Murota, Junichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Yusuke</au><au>Sakuraba, Masao</au><au>Murota, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating</atitle><jtitle>Thin solid films</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>557</volume><spage>10</spage><epage>13</epage><pages>10-13</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Characteristics of B-doped Si epitaxial growth on Si(100) by using electron-cyclotron-resonance Ar plasma enhanced chemical vapor deposition without substrate heating in a SiH4–B2H6–H2–Ar gas mixture were investigated. B concentration in the deposited films increases with decreasing microwave power for plasma generation. At the microwave power of 125W, the B concentration increases up to 5×1021cm−3. Deposition rate of the B-doped Si tends to be enhanced at the higher B2H6 partial pressure. Resistivity of the B-doped Si film tends to increase with decreasing the microwave power. Referring Irvin curve, in the case of 200W, the carrier concentration is estimated to be at least about 1017cm−3 at the B concentration of 1021cm−3. After heat treatment in N2 atmosphere at 200°C and 300°C for 2h, the resistivity drastically decreases to the value which corresponds to carrier concentration of around 1019cm−3. From Fourier transform infrared spectroscopy measurement, it is found that hydrogen incorporated in the as-deposited film desorbed by the heat treatment. •Heavily B-doped Si epitaxial growth on Si(100) can be realized without substrate heating.•B concentration increases with decreasing microwave power.•Deposition rate tends to be enhanced at higher B2H6 partial pressure.•At 200–300°C, resistivity drastically decreases with the reduction of hydrogen concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.08.118</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2014-04, Vol.557, p.10-13
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1880000524
source Elsevier ScienceDirect Journals Complete
subjects Boron
Carrier density
Chemical vapor deposition
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Doping
Electrical activity
Electrical resistivity
Epitaxial growth
Exact sciences and technology
Gas mixtures
Heat treatment
Infrared spectroscopy
Ion and electron beam-assisted deposition
ion plating
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microwaves
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma
Plasma applications
Plasma-based ion implantation and deposition
Resistivity
Silicon
Silicon substrates
Theory and models of film growth
title Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20B-doped%20Si%20on%20Si(100)%20by%20electron-cyclotron-resonance%20Ar%20plasma%20chemical%20vapor%20deposition%20in%20a%20SiH4%E2%80%93B2H6%E2%80%93H2%20gas%20mixture%20without%20substrate%20heating&rft.jtitle=Thin%20solid%20films&rft.au=Abe,%20Yusuke&rft.date=2014-04-01&rft.volume=557&rft.spage=10&rft.epage=13&rft.pages=10-13&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.08.118&rft_dat=%3Cproquest_cross%3E1880000524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880000524&rft_id=info:pmid/&rft_els_id=S0040609013014314&rfr_iscdi=true