Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC

Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2017-01, Vol.218 (1), p.np-n/a
Hauptverfasser: Guo, Xiaoai, Laryea, Esther, Wilhelm, Manfred, Luy, Burkhard, Nirschl, Hermann, Guthausen, Gisela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Macromolecular chemistry and physics
container_volume 218
creator Guo, Xiaoai
Laryea, Esther
Wilhelm, Manfred
Luy, Burkhard
Nirschl, Hermann
Guthausen, Gisela
description Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography. Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.
doi_str_mv 10.1002/macp.201600440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880000227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020329285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho1hBdZ1ve4sYJddnFKftncr0q8BzRr0A7tNkB1qU6FYmWRjyK0_ob9xv6RKU2xAD-2JBPm8BMm3KD5SmFAAdrA03WrCgCoAIeBNsUsloyVvuHybc2CspFyyd8X7lG4BoIam2i1-HDlrx-RCT1xP5sGvlxjJVfDjkGvpC5kFj93oTSTf0f38NZAjl4bo2sc-addkfnL69-7-2-ySmH5BLtGbx84QyNXx9EOxY41PuP8U94qbk-Pr6Vl5fnH6dXp4XnYi71qaFlXHrFWiRVYt0HbK0gXythW1sVWbL1GK15KCBNqg5I2qBZomV7hF2fC94vN27iqG3yOmQS9d6tB702MYk6Z1nU_OP6gy-ukZehvG2OftNAcGnDWsli9RtJaiUkKozazJlupiSCmi1avoliauNQW9MUVvTNH_TMmCZiv44zyuX6H17HA6_699ACFqjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854764467</pqid></control><display><type>article</type><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><source>Access via Wiley Online Library</source><creator>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</creator><creatorcontrib>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</creatorcontrib><description>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography. Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201600440</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chloroform ; Deuteration ; Diffusion ; Diffusion coefficient ; diffusion coefficient distribution ; Low concentrations ; Mathematical models ; Molecular weight ; Molecular weight distribution ; NMR ; Normal distribution ; Nuclear magnetic resonance ; polymer solutions ; Polymers ; Polymethyl methacrylate ; Polystyrene resins ; Probability distribution functions ; pulsed field‐gradient NMR ; Regularization ; Scaling laws ; Signal to noise ratio ; Size exclusion chromatography ; Statistical analysis</subject><ispartof>Macromolecular chemistry and physics, 2017-01, Vol.218 (1), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright 2017 by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright 2017 by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</citedby><cites>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201600440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201600440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Laryea, Esther</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><title>Macromolecular chemistry and physics</title><description>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography. Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</description><subject>Chloroform</subject><subject>Deuteration</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>diffusion coefficient distribution</subject><subject>Low concentrations</subject><subject>Mathematical models</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>NMR</subject><subject>Normal distribution</subject><subject>Nuclear magnetic resonance</subject><subject>polymer solutions</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Probability distribution functions</subject><subject>pulsed field‐gradient NMR</subject><subject>Regularization</subject><subject>Scaling laws</subject><subject>Signal to noise ratio</subject><subject>Size exclusion chromatography</subject><subject>Statistical analysis</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMho1hBdZ1ve4sYJddnFKftncr0q8BzRr0A7tNkB1qU6FYmWRjyK0_ob9xv6RKU2xAD-2JBPm8BMm3KD5SmFAAdrA03WrCgCoAIeBNsUsloyVvuHybc2CspFyyd8X7lG4BoIam2i1-HDlrx-RCT1xP5sGvlxjJVfDjkGvpC5kFj93oTSTf0f38NZAjl4bo2sc-addkfnL69-7-2-ySmH5BLtGbx84QyNXx9EOxY41PuP8U94qbk-Pr6Vl5fnH6dXp4XnYi71qaFlXHrFWiRVYt0HbK0gXythW1sVWbL1GK15KCBNqg5I2qBZomV7hF2fC94vN27iqG3yOmQS9d6tB702MYk6Z1nU_OP6gy-ukZehvG2OftNAcGnDWsli9RtJaiUkKozazJlupiSCmi1avoliauNQW9MUVvTNH_TMmCZiv44zyuX6H17HA6_699ACFqjyk</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Guo, Xiaoai</creator><creator>Laryea, Esther</creator><creator>Wilhelm, Manfred</creator><creator>Luy, Burkhard</creator><creator>Nirschl, Hermann</creator><creator>Guthausen, Gisela</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201701</creationdate><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><author>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chloroform</topic><topic>Deuteration</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>diffusion coefficient distribution</topic><topic>Low concentrations</topic><topic>Mathematical models</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>NMR</topic><topic>Normal distribution</topic><topic>Nuclear magnetic resonance</topic><topic>polymer solutions</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Probability distribution functions</topic><topic>pulsed field‐gradient NMR</topic><topic>Regularization</topic><topic>Scaling laws</topic><topic>Signal to noise ratio</topic><topic>Size exclusion chromatography</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Laryea, Esther</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoai</au><au>Laryea, Esther</au><au>Wilhelm, Manfred</au><au>Luy, Burkhard</au><au>Nirschl, Hermann</au><au>Guthausen, Gisela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2017-01</date><risdate>2017</risdate><volume>218</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography. Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201600440</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2017-01, Vol.218 (1), p.np-n/a
issn 1022-1352
1521-3935
language eng
recordid cdi_proquest_miscellaneous_1880000227
source Access via Wiley Online Library
subjects Chloroform
Deuteration
Diffusion
Diffusion coefficient
diffusion coefficient distribution
Low concentrations
Mathematical models
Molecular weight
Molecular weight distribution
NMR
Normal distribution
Nuclear magnetic resonance
polymer solutions
Polymers
Polymethyl methacrylate
Polystyrene resins
Probability distribution functions
pulsed field‐gradient NMR
Regularization
Scaling laws
Signal to noise ratio
Size exclusion chromatography
Statistical analysis
title Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20Polymer%20Solutions:%20Molecular%20Weight%20Distribution%20by%20PFG%E2%80%90NMR%20and%20Relation%20to%20SEC&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Guo,%20Xiaoai&rft.date=2017-01&rft.volume=218&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201600440&rft_dat=%3Cproquest_cross%3E3020329285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854764467&rft_id=info:pmid/&rfr_iscdi=true