Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC
Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2017-01, Vol.218 (1), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | np |
container_title | Macromolecular chemistry and physics |
container_volume | 218 |
creator | Guo, Xiaoai Laryea, Esther Wilhelm, Manfred Luy, Burkhard Nirschl, Hermann Guthausen, Gisela |
description | Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography.
Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions. |
doi_str_mv | 10.1002/macp.201600440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880000227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020329285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho1hBdZ1ve4sYJddnFKftncr0q8BzRr0A7tNkB1qU6FYmWRjyK0_ob9xv6RKU2xAD-2JBPm8BMm3KD5SmFAAdrA03WrCgCoAIeBNsUsloyVvuHybc2CspFyyd8X7lG4BoIam2i1-HDlrx-RCT1xP5sGvlxjJVfDjkGvpC5kFj93oTSTf0f38NZAjl4bo2sc-addkfnL69-7-2-ySmH5BLtGbx84QyNXx9EOxY41PuP8U94qbk-Pr6Vl5fnH6dXp4XnYi71qaFlXHrFWiRVYt0HbK0gXythW1sVWbL1GK15KCBNqg5I2qBZomV7hF2fC94vN27iqG3yOmQS9d6tB702MYk6Z1nU_OP6gy-ukZehvG2OftNAcGnDWsli9RtJaiUkKozazJlupiSCmi1avoliauNQW9MUVvTNH_TMmCZiv44zyuX6H17HA6_699ACFqjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854764467</pqid></control><display><type>article</type><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><source>Access via Wiley Online Library</source><creator>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</creator><creatorcontrib>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</creatorcontrib><description>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography.
Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201600440</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chloroform ; Deuteration ; Diffusion ; Diffusion coefficient ; diffusion coefficient distribution ; Low concentrations ; Mathematical models ; Molecular weight ; Molecular weight distribution ; NMR ; Normal distribution ; Nuclear magnetic resonance ; polymer solutions ; Polymers ; Polymethyl methacrylate ; Polystyrene resins ; Probability distribution functions ; pulsed field‐gradient NMR ; Regularization ; Scaling laws ; Signal to noise ratio ; Size exclusion chromatography ; Statistical analysis</subject><ispartof>Macromolecular chemistry and physics, 2017-01, Vol.218 (1), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</citedby><cites>FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201600440$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201600440$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Laryea, Esther</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><title>Macromolecular chemistry and physics</title><description>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography.
Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</description><subject>Chloroform</subject><subject>Deuteration</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>diffusion coefficient distribution</subject><subject>Low concentrations</subject><subject>Mathematical models</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>NMR</subject><subject>Normal distribution</subject><subject>Nuclear magnetic resonance</subject><subject>polymer solutions</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Probability distribution functions</subject><subject>pulsed field‐gradient NMR</subject><subject>Regularization</subject><subject>Scaling laws</subject><subject>Signal to noise ratio</subject><subject>Size exclusion chromatography</subject><subject>Statistical analysis</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMho1hBdZ1ve4sYJddnFKftncr0q8BzRr0A7tNkB1qU6FYmWRjyK0_ob9xv6RKU2xAD-2JBPm8BMm3KD5SmFAAdrA03WrCgCoAIeBNsUsloyVvuHybc2CspFyyd8X7lG4BoIam2i1-HDlrx-RCT1xP5sGvlxjJVfDjkGvpC5kFj93oTSTf0f38NZAjl4bo2sc-addkfnL69-7-2-ySmH5BLtGbx84QyNXx9EOxY41PuP8U94qbk-Pr6Vl5fnH6dXp4XnYi71qaFlXHrFWiRVYt0HbK0gXythW1sVWbL1GK15KCBNqg5I2qBZomV7hF2fC94vN27iqG3yOmQS9d6tB702MYk6Z1nU_OP6gy-ukZehvG2OftNAcGnDWsli9RtJaiUkKozazJlupiSCmi1avoliauNQW9MUVvTNH_TMmCZiv44zyuX6H17HA6_699ACFqjyk</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Guo, Xiaoai</creator><creator>Laryea, Esther</creator><creator>Wilhelm, Manfred</creator><creator>Luy, Burkhard</creator><creator>Nirschl, Hermann</creator><creator>Guthausen, Gisela</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201701</creationdate><title>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</title><author>Guo, Xiaoai ; Laryea, Esther ; Wilhelm, Manfred ; Luy, Burkhard ; Nirschl, Hermann ; Guthausen, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-abe6c2ff64be27defc6f1de3bb48af7b15266385105019e539684ea98513fe593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chloroform</topic><topic>Deuteration</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>diffusion coefficient distribution</topic><topic>Low concentrations</topic><topic>Mathematical models</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>NMR</topic><topic>Normal distribution</topic><topic>Nuclear magnetic resonance</topic><topic>polymer solutions</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Probability distribution functions</topic><topic>pulsed field‐gradient NMR</topic><topic>Regularization</topic><topic>Scaling laws</topic><topic>Signal to noise ratio</topic><topic>Size exclusion chromatography</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoai</creatorcontrib><creatorcontrib>Laryea, Esther</creatorcontrib><creatorcontrib>Wilhelm, Manfred</creatorcontrib><creatorcontrib>Luy, Burkhard</creatorcontrib><creatorcontrib>Nirschl, Hermann</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoai</au><au>Laryea, Esther</au><au>Wilhelm, Manfred</au><au>Luy, Burkhard</au><au>Nirschl, Hermann</au><au>Guthausen, Gisela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2017-01</date><risdate>2017</risdate><volume>218</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Quantification of diffusion coefficient distribution (DCD) and correlation with molecular weight distribution (MWD) of polymers is still an issue in pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The conventional scaling law utilized so far to relate diffusion coefficient and molecular weight only holds true for the determination of MWD at sufficiently low concentrations. To extend measurement limits and to get a good signal‐to‐noise ratio, an exponential correlation is introduced to describe the effect of polymer concentration on diffusion in PFG‐NMR. Two model polymers (polystyrene and poly(methyl methacrylate)) dissolved in deuterated chloroform are studied at different concentrations in the range of 0.16–8 wt%. The DCDs are determined by modeling the measured signal attenuation with three methods (gamma distribution, log normal distribution, and tailored norm regularization). It is shown that the proposed method applies to the PFG‐NMR measurements on polymer solutions over a wide concentration range, providing almost the same MWDs as those obtained at low concentrations. The MWDs retrieved from NMR experiments agree well with those by size exclusion chromatography.
Diffusion coefficient distribution and molecular weight distribution (MWD) of polymers are determined by pulsed field‐gradient nuclear magnetic resonance (PFG‐NMR). The retrieved MWDs agree well with those obtained by size exclusion chromatography. The measurements and data interpretation are extended to higher polymer concentrations, improving the signal‐to‐noise ratio, i.e., the accuracy and the applicability of the PFG‐NMR in the study of polymer solutions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201600440</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2017-01, Vol.218 (1), p.np-n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880000227 |
source | Access via Wiley Online Library |
subjects | Chloroform Deuteration Diffusion Diffusion coefficient diffusion coefficient distribution Low concentrations Mathematical models Molecular weight Molecular weight distribution NMR Normal distribution Nuclear magnetic resonance polymer solutions Polymers Polymethyl methacrylate Polystyrene resins Probability distribution functions pulsed field‐gradient NMR Regularization Scaling laws Signal to noise ratio Size exclusion chromatography Statistical analysis |
title | Diffusion in Polymer Solutions: Molecular Weight Distribution by PFG‐NMR and Relation to SEC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20Polymer%20Solutions:%20Molecular%20Weight%20Distribution%20by%20PFG%E2%80%90NMR%20and%20Relation%20to%20SEC&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Guo,%20Xiaoai&rft.date=2017-01&rft.volume=218&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201600440&rft_dat=%3Cproquest_cross%3E3020329285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854764467&rft_id=info:pmid/&rfr_iscdi=true |