Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications

Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2017-01, Vol.6 (2), p.np-n/a
Hauptverfasser: Wuttke, Stefan, Zimpel, Andreas, Bein, Thomas, Braig, Simone, Stoiber, Katharina, Vollmar, Angelika, Müller, Dominik, Haastert‐Talini, Kirsten, Schaeske, Jörn, Stiesch, Meike, Zahn, Gesa, Mohmeyer, Alexander, Behrens, Peter, Eickelberg, Oliver, Bölükbas, Deniz A., Meiners, Silke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page np
container_title Advanced healthcare materials
container_volume 6
creator Wuttke, Stefan
Zimpel, Andreas
Bein, Thomas
Braig, Simone
Stoiber, Katharina
Vollmar, Angelika
Müller, Dominik
Haastert‐Talini, Kirsten
Schaeske, Jörn
Stiesch, Meike
Zahn, Gesa
Mohmeyer, Alexander
Behrens, Peter
Eickelberg, Oliver
Bölükbas, Deniz A.
Meiners, Silke
description Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively. Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.
doi_str_mv 10.1002/adhm.201600818
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879999750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4307525731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</originalsourceid><addsrcrecordid>eNqNkb9OHDEQh62IKCBCSxlZSkNzF__Ztb3lBQJEgtAA7WrOOwu-eNcbew90XR6BZ8yTxJcjFykNTOPR6PMnzfwIOeRsyhkTn6C576aCccWY4eYN2RO8EhOhympn2xdslxyktGC5VMmV4e_IrtBGSa7UHlncgncNjK6_o5c4gv_18-kq3kHvLD2N0OFjiN_pN-jDAHF01mOibYj0-h5d_DNP0OK4oq6nJ-4BY0L62YUOG2fB09kw-NyMLvTpPXnbgk948Pzuk5vTL9fH55OLq7Ovx7OLiS10ZSal4dxY1fIGm7kEaaDUWrd5QamVNcAQhGCNZWiRW6HLqsW2mCtmjASm53KfHG28Qww_lpjGunPJovfQY1immhtd5dIlewWqjMy3VfIVaMENE5Vcox__QxdhGfu881rIZaFYWWVquqFsDClFbOshug7iquasXsdbr-Ott_HmDx-etct5vu8W_xtmBqoN8Og8rl7Q1bOT88t_8t-yAbFX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861346059</pqid></control><display><type>article</type><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</creator><creatorcontrib>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</creatorcontrib><description>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively. Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201600818</identifier><identifier>PMID: 27863166</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Coatings ; Drug Carriers - adverse effects ; Drug Carriers - chemistry ; drug delivery ; Drug delivery systems ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gingiva - cytology ; Gingiva - metabolism ; Humans ; Metal-organic frameworks ; Mice ; Nanomaterials ; nanomedicine ; Nanoparticles ; Nanoparticles - adverse effects ; Nanoparticles - chemistry ; nanosafety ; Nanostructure ; Platforms ; Synthesis ; Transplants &amp; implants</subject><ispartof>Advanced healthcare materials, 2017-01, Vol.6 (2), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</citedby><cites>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201600818$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201600818$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27863166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wuttke, Stefan</creatorcontrib><creatorcontrib>Zimpel, Andreas</creatorcontrib><creatorcontrib>Bein, Thomas</creatorcontrib><creatorcontrib>Braig, Simone</creatorcontrib><creatorcontrib>Stoiber, Katharina</creatorcontrib><creatorcontrib>Vollmar, Angelika</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Haastert‐Talini, Kirsten</creatorcontrib><creatorcontrib>Schaeske, Jörn</creatorcontrib><creatorcontrib>Stiesch, Meike</creatorcontrib><creatorcontrib>Zahn, Gesa</creatorcontrib><creatorcontrib>Mohmeyer, Alexander</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Eickelberg, Oliver</creatorcontrib><creatorcontrib>Bölükbas, Deniz A.</creatorcontrib><creatorcontrib>Meiners, Silke</creatorcontrib><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively. Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</description><subject>Animals</subject><subject>Coatings</subject><subject>Drug Carriers - adverse effects</subject><subject>Drug Carriers - chemistry</subject><subject>drug delivery</subject><subject>Drug delivery systems</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gingiva - cytology</subject><subject>Gingiva - metabolism</subject><subject>Humans</subject><subject>Metal-organic frameworks</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoparticles - adverse effects</subject><subject>Nanoparticles - chemistry</subject><subject>nanosafety</subject><subject>Nanostructure</subject><subject>Platforms</subject><subject>Synthesis</subject><subject>Transplants &amp; implants</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb9OHDEQh62IKCBCSxlZSkNzF__Ztb3lBQJEgtAA7WrOOwu-eNcbew90XR6BZ8yTxJcjFykNTOPR6PMnzfwIOeRsyhkTn6C576aCccWY4eYN2RO8EhOhympn2xdslxyktGC5VMmV4e_IrtBGSa7UHlncgncNjK6_o5c4gv_18-kq3kHvLD2N0OFjiN_pN-jDAHF01mOibYj0-h5d_DNP0OK4oq6nJ-4BY0L62YUOG2fB09kw-NyMLvTpPXnbgk948Pzuk5vTL9fH55OLq7Ovx7OLiS10ZSal4dxY1fIGm7kEaaDUWrd5QamVNcAQhGCNZWiRW6HLqsW2mCtmjASm53KfHG28Qww_lpjGunPJovfQY1immhtd5dIlewWqjMy3VfIVaMENE5Vcox__QxdhGfu881rIZaFYWWVquqFsDClFbOshug7iquasXsdbr-Ott_HmDx-etct5vu8W_xtmBqoN8Og8rl7Q1bOT88t_8t-yAbFX</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wuttke, Stefan</creator><creator>Zimpel, Andreas</creator><creator>Bein, Thomas</creator><creator>Braig, Simone</creator><creator>Stoiber, Katharina</creator><creator>Vollmar, Angelika</creator><creator>Müller, Dominik</creator><creator>Haastert‐Talini, Kirsten</creator><creator>Schaeske, Jörn</creator><creator>Stiesch, Meike</creator><creator>Zahn, Gesa</creator><creator>Mohmeyer, Alexander</creator><creator>Behrens, Peter</creator><creator>Eickelberg, Oliver</creator><creator>Bölükbas, Deniz A.</creator><creator>Meiners, Silke</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20170101</creationdate><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><author>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Coatings</topic><topic>Drug Carriers - adverse effects</topic><topic>Drug Carriers - chemistry</topic><topic>drug delivery</topic><topic>Drug delivery systems</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gingiva - cytology</topic><topic>Gingiva - metabolism</topic><topic>Humans</topic><topic>Metal-organic frameworks</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoparticles - adverse effects</topic><topic>Nanoparticles - chemistry</topic><topic>nanosafety</topic><topic>Nanostructure</topic><topic>Platforms</topic><topic>Synthesis</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wuttke, Stefan</creatorcontrib><creatorcontrib>Zimpel, Andreas</creatorcontrib><creatorcontrib>Bein, Thomas</creatorcontrib><creatorcontrib>Braig, Simone</creatorcontrib><creatorcontrib>Stoiber, Katharina</creatorcontrib><creatorcontrib>Vollmar, Angelika</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Haastert‐Talini, Kirsten</creatorcontrib><creatorcontrib>Schaeske, Jörn</creatorcontrib><creatorcontrib>Stiesch, Meike</creatorcontrib><creatorcontrib>Zahn, Gesa</creatorcontrib><creatorcontrib>Mohmeyer, Alexander</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Eickelberg, Oliver</creatorcontrib><creatorcontrib>Bölükbas, Deniz A.</creatorcontrib><creatorcontrib>Meiners, Silke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wuttke, Stefan</au><au>Zimpel, Andreas</au><au>Bein, Thomas</au><au>Braig, Simone</au><au>Stoiber, Katharina</au><au>Vollmar, Angelika</au><au>Müller, Dominik</au><au>Haastert‐Talini, Kirsten</au><au>Schaeske, Jörn</au><au>Stiesch, Meike</au><au>Zahn, Gesa</au><au>Mohmeyer, Alexander</au><au>Behrens, Peter</au><au>Eickelberg, Oliver</au><au>Bölükbas, Deniz A.</au><au>Meiners, Silke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>2</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively. Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27863166</pmid><doi>10.1002/adhm.201600818</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-01, Vol.6 (2), p.np-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1879999750
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Coatings
Drug Carriers - adverse effects
Drug Carriers - chemistry
drug delivery
Drug delivery systems
Endothelial Cells - cytology
Endothelial Cells - metabolism
Fibroblasts - cytology
Fibroblasts - metabolism
Gingiva - cytology
Gingiva - metabolism
Humans
Metal-organic frameworks
Mice
Nanomaterials
nanomedicine
Nanoparticles
Nanoparticles - adverse effects
Nanoparticles - chemistry
nanosafety
Nanostructure
Platforms
Synthesis
Transplants & implants
title Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validating%20Metal%E2%80%90Organic%20Framework%20Nanoparticles%20for%20Their%20Nanosafety%20in%20Diverse%20Biomedical%20Applications&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wuttke,%20Stefan&rft.date=2017-01-01&rft.volume=6&rft.issue=2&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201600818&rft_dat=%3Cproquest_cross%3E4307525731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861346059&rft_id=info:pmid/27863166&rfr_iscdi=true