Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications
Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applica...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2017-01, Vol.6 (2), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | np |
container_title | Advanced healthcare materials |
container_volume | 6 |
creator | Wuttke, Stefan Zimpel, Andreas Bein, Thomas Braig, Simone Stoiber, Katharina Vollmar, Angelika Müller, Dominik Haastert‐Talini, Kirsten Schaeske, Jörn Stiesch, Meike Zahn, Gesa Mohmeyer, Alexander Behrens, Peter Eickelberg, Oliver Bölükbas, Deniz A. Meiners, Silke |
description | Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application. |
doi_str_mv | 10.1002/adhm.201600818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879999750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4307525731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</originalsourceid><addsrcrecordid>eNqNkb9OHDEQh62IKCBCSxlZSkNzF__Ztb3lBQJEgtAA7WrOOwu-eNcbew90XR6BZ8yTxJcjFykNTOPR6PMnzfwIOeRsyhkTn6C576aCccWY4eYN2RO8EhOhympn2xdslxyktGC5VMmV4e_IrtBGSa7UHlncgncNjK6_o5c4gv_18-kq3kHvLD2N0OFjiN_pN-jDAHF01mOibYj0-h5d_DNP0OK4oq6nJ-4BY0L62YUOG2fB09kw-NyMLvTpPXnbgk948Pzuk5vTL9fH55OLq7Ovx7OLiS10ZSal4dxY1fIGm7kEaaDUWrd5QamVNcAQhGCNZWiRW6HLqsW2mCtmjASm53KfHG28Qww_lpjGunPJovfQY1immhtd5dIlewWqjMy3VfIVaMENE5Vcox__QxdhGfu881rIZaFYWWVquqFsDClFbOshug7iquasXsdbr-Ott_HmDx-etct5vu8W_xtmBqoN8Og8rl7Q1bOT88t_8t-yAbFX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861346059</pqid></control><display><type>article</type><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</creator><creatorcontrib>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</creatorcontrib><description>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201600818</identifier><identifier>PMID: 27863166</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Coatings ; Drug Carriers - adverse effects ; Drug Carriers - chemistry ; drug delivery ; Drug delivery systems ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gingiva - cytology ; Gingiva - metabolism ; Humans ; Metal-organic frameworks ; Mice ; Nanomaterials ; nanomedicine ; Nanoparticles ; Nanoparticles - adverse effects ; Nanoparticles - chemistry ; nanosafety ; Nanostructure ; Platforms ; Synthesis ; Transplants & implants</subject><ispartof>Advanced healthcare materials, 2017-01, Vol.6 (2), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</citedby><cites>FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201600818$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201600818$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27863166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wuttke, Stefan</creatorcontrib><creatorcontrib>Zimpel, Andreas</creatorcontrib><creatorcontrib>Bein, Thomas</creatorcontrib><creatorcontrib>Braig, Simone</creatorcontrib><creatorcontrib>Stoiber, Katharina</creatorcontrib><creatorcontrib>Vollmar, Angelika</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Haastert‐Talini, Kirsten</creatorcontrib><creatorcontrib>Schaeske, Jörn</creatorcontrib><creatorcontrib>Stiesch, Meike</creatorcontrib><creatorcontrib>Zahn, Gesa</creatorcontrib><creatorcontrib>Mohmeyer, Alexander</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Eickelberg, Oliver</creatorcontrib><creatorcontrib>Bölükbas, Deniz A.</creatorcontrib><creatorcontrib>Meiners, Silke</creatorcontrib><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</description><subject>Animals</subject><subject>Coatings</subject><subject>Drug Carriers - adverse effects</subject><subject>Drug Carriers - chemistry</subject><subject>drug delivery</subject><subject>Drug delivery systems</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gingiva - cytology</subject><subject>Gingiva - metabolism</subject><subject>Humans</subject><subject>Metal-organic frameworks</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoparticles - adverse effects</subject><subject>Nanoparticles - chemistry</subject><subject>nanosafety</subject><subject>Nanostructure</subject><subject>Platforms</subject><subject>Synthesis</subject><subject>Transplants & implants</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb9OHDEQh62IKCBCSxlZSkNzF__Ztb3lBQJEgtAA7WrOOwu-eNcbew90XR6BZ8yTxJcjFykNTOPR6PMnzfwIOeRsyhkTn6C576aCccWY4eYN2RO8EhOhympn2xdslxyktGC5VMmV4e_IrtBGSa7UHlncgncNjK6_o5c4gv_18-kq3kHvLD2N0OFjiN_pN-jDAHF01mOibYj0-h5d_DNP0OK4oq6nJ-4BY0L62YUOG2fB09kw-NyMLvTpPXnbgk948Pzuk5vTL9fH55OLq7Ovx7OLiS10ZSal4dxY1fIGm7kEaaDUWrd5QamVNcAQhGCNZWiRW6HLqsW2mCtmjASm53KfHG28Qww_lpjGunPJovfQY1immhtd5dIlewWqjMy3VfIVaMENE5Vcox__QxdhGfu881rIZaFYWWVquqFsDClFbOshug7iquasXsdbr-Ott_HmDx-etct5vu8W_xtmBqoN8Og8rl7Q1bOT88t_8t-yAbFX</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wuttke, Stefan</creator><creator>Zimpel, Andreas</creator><creator>Bein, Thomas</creator><creator>Braig, Simone</creator><creator>Stoiber, Katharina</creator><creator>Vollmar, Angelika</creator><creator>Müller, Dominik</creator><creator>Haastert‐Talini, Kirsten</creator><creator>Schaeske, Jörn</creator><creator>Stiesch, Meike</creator><creator>Zahn, Gesa</creator><creator>Mohmeyer, Alexander</creator><creator>Behrens, Peter</creator><creator>Eickelberg, Oliver</creator><creator>Bölükbas, Deniz A.</creator><creator>Meiners, Silke</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20170101</creationdate><title>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</title><author>Wuttke, Stefan ; Zimpel, Andreas ; Bein, Thomas ; Braig, Simone ; Stoiber, Katharina ; Vollmar, Angelika ; Müller, Dominik ; Haastert‐Talini, Kirsten ; Schaeske, Jörn ; Stiesch, Meike ; Zahn, Gesa ; Mohmeyer, Alexander ; Behrens, Peter ; Eickelberg, Oliver ; Bölükbas, Deniz A. ; Meiners, Silke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4798-58118c6f1dedb3a38a5777f818376c8a0ea220dc0ece1c2759fef4b60883a07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Coatings</topic><topic>Drug Carriers - adverse effects</topic><topic>Drug Carriers - chemistry</topic><topic>drug delivery</topic><topic>Drug delivery systems</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gingiva - cytology</topic><topic>Gingiva - metabolism</topic><topic>Humans</topic><topic>Metal-organic frameworks</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoparticles - adverse effects</topic><topic>Nanoparticles - chemistry</topic><topic>nanosafety</topic><topic>Nanostructure</topic><topic>Platforms</topic><topic>Synthesis</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wuttke, Stefan</creatorcontrib><creatorcontrib>Zimpel, Andreas</creatorcontrib><creatorcontrib>Bein, Thomas</creatorcontrib><creatorcontrib>Braig, Simone</creatorcontrib><creatorcontrib>Stoiber, Katharina</creatorcontrib><creatorcontrib>Vollmar, Angelika</creatorcontrib><creatorcontrib>Müller, Dominik</creatorcontrib><creatorcontrib>Haastert‐Talini, Kirsten</creatorcontrib><creatorcontrib>Schaeske, Jörn</creatorcontrib><creatorcontrib>Stiesch, Meike</creatorcontrib><creatorcontrib>Zahn, Gesa</creatorcontrib><creatorcontrib>Mohmeyer, Alexander</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Eickelberg, Oliver</creatorcontrib><creatorcontrib>Bölükbas, Deniz A.</creatorcontrib><creatorcontrib>Meiners, Silke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wuttke, Stefan</au><au>Zimpel, Andreas</au><au>Bein, Thomas</au><au>Braig, Simone</au><au>Stoiber, Katharina</au><au>Vollmar, Angelika</au><au>Müller, Dominik</au><au>Haastert‐Talini, Kirsten</au><au>Schaeske, Jörn</au><au>Stiesch, Meike</au><au>Zahn, Gesa</au><au>Mohmeyer, Alexander</au><au>Behrens, Peter</au><au>Eickelberg, Oliver</au><au>Bölükbas, Deniz A.</au><au>Meiners, Silke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>2</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Metal‐organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood‐mediated and local lung‐specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.
Metal‐organic frameworks (MOFs) are a promising platform for the synthesis of porous nanoparticles for diverse medical applications. The aim of this study is to comprehensively investigate the nanosafety of different MOF nanoparticles for distinct fields of medical applications. Data presented here suggest the need to evaluate the nanosafety of each MOF nanomaterial with respect to their particular medical application.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27863166</pmid><doi>10.1002/adhm.201600818</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2017-01, Vol.6 (2), p.np-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879999750 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Coatings Drug Carriers - adverse effects Drug Carriers - chemistry drug delivery Drug delivery systems Endothelial Cells - cytology Endothelial Cells - metabolism Fibroblasts - cytology Fibroblasts - metabolism Gingiva - cytology Gingiva - metabolism Humans Metal-organic frameworks Mice Nanomaterials nanomedicine Nanoparticles Nanoparticles - adverse effects Nanoparticles - chemistry nanosafety Nanostructure Platforms Synthesis Transplants & implants |
title | Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validating%20Metal%E2%80%90Organic%20Framework%20Nanoparticles%20for%20Their%20Nanosafety%20in%20Diverse%20Biomedical%20Applications&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wuttke,%20Stefan&rft.date=2017-01-01&rft.volume=6&rft.issue=2&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201600818&rft_dat=%3Cproquest_cross%3E4307525731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861346059&rft_id=info:pmid/27863166&rfr_iscdi=true |