Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation
Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorptio...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2017-02, Vol.409 (4), p.1007-1016 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1016 |
---|---|
container_issue | 4 |
container_start_page | 1007 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 409 |
creator | Shimizu, Yasuo Satou, Motoyasu Hayashi, Keitaro Nakamura, Yusuke Fujimaki, Mio Horibata, Yasuhiro Ando, Hiromi Watanabe, Taiji Shiobara, Taichi Chibana, Kazuyuki Takemasa, Akihiro Sugimoto, Hiroyuki Anzai, Naohiko Ishii, Yoshiki |
description | Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS). Analysis revealed changes of the intensity and distribution of peaks at
m
/
z
782.5 and 798.5 in iPSC colonies during spontaneous differentiation. Two phosphatidylcholines (PCs) were identified: C
44
H
81
NO
8
P, PC(36:4)[M+H]+ at
m
/
z
782.5 and C
42
H
82
NO
8
P, PC(34:1)[M+K]+ at
m
/
z
798.5. The intensity of PC(36:4) showed an inverse relation between undifferentiated and differentiated iPSC colonies. PC(34:1) displayed a diffuse distribution in undifferentiated iPSC colonies, while it showed a concentric distribution in differentiated iPSC colonies, and was localized at the border of the differentiated and undifferentiated areas or the border between undifferentiated iPSC and feeder cells. These findings suggested that the distribution of lipids changes during the growth and differentiation of iPSCs and that MALDI-TOF-IMS was useful for analyzing these changes. PC(36:4) might play a role in maintaining pluripotency, while PC(34:1) might play a role in the differentiation and spread of iPSCs.
Graphical Abstract
MALDI Imaging for phosphatidylcholine distribution changes during sponteneous differentiaton of induced pluiripotent stem cells colonies |
doi_str_mv | 10.1007/s00216-016-0015-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879999433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550916094</galeid><sourcerecordid>A550916094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-f32b8363afaf9c9ee1627c4e951b2d7ed59ce62ab95b2ddf0b896ae754f1c5b53</originalsourceid><addsrcrecordid>eNqNks1u1DAQgC0Eou3CA3BBlrhwSWs7ayc5VhWFSkVc2nPk2OOtqyQOtoN2eaQ-JZOmVAgJCdsj_8w3P9YMIe84O-WMVWeJMcFVwRZhXBb7F-SYK14XQkn28vm8FUfkJKX7ham5ek2ORFVzqTg7Jg9fdY5-X-iUfMpgaa8TRGohhThlH8YzFP9TL0fqB73z444OSNM0gckxDJDjgUb4AbpP1NzpcQeJBkenu5BQej95Sy06j76bVzfLsrPBaFM_Rz-FDGOmGH6gBvqemtCH8YBGzkFElX8M_4a8chgD3j7tG3J7-enm4ktx_e3z1cX5dWFkzXLhStHVpSq1064xDQBXojJbaCTvhK3AysaAErprJN6tY13dKA2V3DpuZCfLDfm4-p1i-D5Dyu3g05KXHiHMqeV11eDYluV_oKouWc04R_TDX-h9mOOIH1koKWRZPVKnK7XTPbR-dCFHbXBaGLwJIziP7-dSsoYrhjlsCF8NTAwpRXDtFLFM8dBy1i5N0q5N0rJFsAHaPdq8f0pl7gawzxa_uwIBsQIJVVjP-Eeu__T6C1KkzUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865253711</pqid></control><display><type>article</type><title>Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shimizu, Yasuo ; Satou, Motoyasu ; Hayashi, Keitaro ; Nakamura, Yusuke ; Fujimaki, Mio ; Horibata, Yasuhiro ; Ando, Hiromi ; Watanabe, Taiji ; Shiobara, Taichi ; Chibana, Kazuyuki ; Takemasa, Akihiro ; Sugimoto, Hiroyuki ; Anzai, Naohiko ; Ishii, Yoshiki</creator><creatorcontrib>Shimizu, Yasuo ; Satou, Motoyasu ; Hayashi, Keitaro ; Nakamura, Yusuke ; Fujimaki, Mio ; Horibata, Yasuhiro ; Ando, Hiromi ; Watanabe, Taiji ; Shiobara, Taichi ; Chibana, Kazuyuki ; Takemasa, Akihiro ; Sugimoto, Hiroyuki ; Anzai, Naohiko ; Ishii, Yoshiki</creatorcontrib><description>Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS). Analysis revealed changes of the intensity and distribution of peaks at
m
/
z
782.5 and 798.5 in iPSC colonies during spontaneous differentiation. Two phosphatidylcholines (PCs) were identified: C
44
H
81
NO
8
P, PC(36:4)[M+H]+ at
m
/
z
782.5 and C
42
H
82
NO
8
P, PC(34:1)[M+K]+ at
m
/
z
798.5. The intensity of PC(36:4) showed an inverse relation between undifferentiated and differentiated iPSC colonies. PC(34:1) displayed a diffuse distribution in undifferentiated iPSC colonies, while it showed a concentric distribution in differentiated iPSC colonies, and was localized at the border of the differentiated and undifferentiated areas or the border between undifferentiated iPSC and feeder cells. These findings suggested that the distribution of lipids changes during the growth and differentiation of iPSCs and that MALDI-TOF-IMS was useful for analyzing these changes. PC(36:4) might play a role in maintaining pluripotency, while PC(34:1) might play a role in the differentiation and spread of iPSCs.
Graphical Abstract
MALDI Imaging for phosphatidylcholine distribution changes during sponteneous differentiaton of induced pluiripotent stem cells colonies</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-016-0015-x</identifier><identifier>PMID: 27815610</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Animals ; Antibodies ; Biochemistry ; Borders ; Cell culture ; Cell Differentiation ; Cell Line ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography, High Pressure Liquid - methods ; Chromatography, Reverse-Phase - methods ; Colonies ; Desorption ; Differentiation ; Fibroblasts ; Food Science ; Imaging ; Immunohistochemistry ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Ionization ; Laboratory Medicine ; Lasers ; Lipids ; Mass spectrometry ; Medicine ; Metabolism ; Methods ; Mice ; Monitoring/Environmental Analysis ; Observations ; Phosphatase ; Phosphatidylcholines - metabolism ; Phospholipids ; Physiological aspects ; Research Paper ; Scientific imaging ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Stem cells</subject><ispartof>Analytical and bioanalytical chemistry, 2017-02, Vol.409 (4), p.1007-1016</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-f32b8363afaf9c9ee1627c4e951b2d7ed59ce62ab95b2ddf0b896ae754f1c5b53</citedby><cites>FETCH-LOGICAL-c580t-f32b8363afaf9c9ee1627c4e951b2d7ed59ce62ab95b2ddf0b896ae754f1c5b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-016-0015-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-016-0015-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27815610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Satou, Motoyasu</creatorcontrib><creatorcontrib>Hayashi, Keitaro</creatorcontrib><creatorcontrib>Nakamura, Yusuke</creatorcontrib><creatorcontrib>Fujimaki, Mio</creatorcontrib><creatorcontrib>Horibata, Yasuhiro</creatorcontrib><creatorcontrib>Ando, Hiromi</creatorcontrib><creatorcontrib>Watanabe, Taiji</creatorcontrib><creatorcontrib>Shiobara, Taichi</creatorcontrib><creatorcontrib>Chibana, Kazuyuki</creatorcontrib><creatorcontrib>Takemasa, Akihiro</creatorcontrib><creatorcontrib>Sugimoto, Hiroyuki</creatorcontrib><creatorcontrib>Anzai, Naohiko</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><title>Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS). Analysis revealed changes of the intensity and distribution of peaks at
m
/
z
782.5 and 798.5 in iPSC colonies during spontaneous differentiation. Two phosphatidylcholines (PCs) were identified: C
44
H
81
NO
8
P, PC(36:4)[M+H]+ at
m
/
z
782.5 and C
42
H
82
NO
8
P, PC(34:1)[M+K]+ at
m
/
z
798.5. The intensity of PC(36:4) showed an inverse relation between undifferentiated and differentiated iPSC colonies. PC(34:1) displayed a diffuse distribution in undifferentiated iPSC colonies, while it showed a concentric distribution in differentiated iPSC colonies, and was localized at the border of the differentiated and undifferentiated areas or the border between undifferentiated iPSC and feeder cells. These findings suggested that the distribution of lipids changes during the growth and differentiation of iPSCs and that MALDI-TOF-IMS was useful for analyzing these changes. PC(36:4) might play a role in maintaining pluripotency, while PC(34:1) might play a role in the differentiation and spread of iPSCs.
Graphical Abstract
MALDI Imaging for phosphatidylcholine distribution changes during sponteneous differentiaton of induced pluiripotent stem cells colonies</description><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Borders</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Chromatography, Reverse-Phase - methods</subject><subject>Colonies</subject><subject>Desorption</subject><subject>Differentiation</subject><subject>Fibroblasts</subject><subject>Food Science</subject><subject>Imaging</subject><subject>Immunohistochemistry</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Ionization</subject><subject>Laboratory Medicine</subject><subject>Lasers</subject><subject>Lipids</subject><subject>Mass spectrometry</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Mice</subject><subject>Monitoring/Environmental Analysis</subject><subject>Observations</subject><subject>Phosphatase</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phospholipids</subject><subject>Physiological aspects</subject><subject>Research Paper</subject><subject>Scientific imaging</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Stem cells</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1u1DAQgC0Eou3CA3BBlrhwSWs7ayc5VhWFSkVc2nPk2OOtqyQOtoN2eaQ-JZOmVAgJCdsj_8w3P9YMIe84O-WMVWeJMcFVwRZhXBb7F-SYK14XQkn28vm8FUfkJKX7ham5ek2ORFVzqTg7Jg9fdY5-X-iUfMpgaa8TRGohhThlH8YzFP9TL0fqB73z444OSNM0gckxDJDjgUb4AbpP1NzpcQeJBkenu5BQej95Sy06j76bVzfLsrPBaFM_Rz-FDGOmGH6gBvqemtCH8YBGzkFElX8M_4a8chgD3j7tG3J7-enm4ktx_e3z1cX5dWFkzXLhStHVpSq1064xDQBXojJbaCTvhK3AysaAErprJN6tY13dKA2V3DpuZCfLDfm4-p1i-D5Dyu3g05KXHiHMqeV11eDYluV_oKouWc04R_TDX-h9mOOIH1koKWRZPVKnK7XTPbR-dCFHbXBaGLwJIziP7-dSsoYrhjlsCF8NTAwpRXDtFLFM8dBy1i5N0q5N0rJFsAHaPdq8f0pl7gawzxa_uwIBsQIJVVjP-Eeu__T6C1KkzUI</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Shimizu, Yasuo</creator><creator>Satou, Motoyasu</creator><creator>Hayashi, Keitaro</creator><creator>Nakamura, Yusuke</creator><creator>Fujimaki, Mio</creator><creator>Horibata, Yasuhiro</creator><creator>Ando, Hiromi</creator><creator>Watanabe, Taiji</creator><creator>Shiobara, Taichi</creator><creator>Chibana, Kazuyuki</creator><creator>Takemasa, Akihiro</creator><creator>Sugimoto, Hiroyuki</creator><creator>Anzai, Naohiko</creator><creator>Ishii, Yoshiki</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation</title><author>Shimizu, Yasuo ; Satou, Motoyasu ; Hayashi, Keitaro ; Nakamura, Yusuke ; Fujimaki, Mio ; Horibata, Yasuhiro ; Ando, Hiromi ; Watanabe, Taiji ; Shiobara, Taichi ; Chibana, Kazuyuki ; Takemasa, Akihiro ; Sugimoto, Hiroyuki ; Anzai, Naohiko ; Ishii, Yoshiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-f32b8363afaf9c9ee1627c4e951b2d7ed59ce62ab95b2ddf0b896ae754f1c5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Borders</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Chromatography, Reverse-Phase - methods</topic><topic>Colonies</topic><topic>Desorption</topic><topic>Differentiation</topic><topic>Fibroblasts</topic><topic>Food Science</topic><topic>Imaging</topic><topic>Immunohistochemistry</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Ionization</topic><topic>Laboratory Medicine</topic><topic>Lasers</topic><topic>Lipids</topic><topic>Mass spectrometry</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Mice</topic><topic>Monitoring/Environmental Analysis</topic><topic>Observations</topic><topic>Phosphatase</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phospholipids</topic><topic>Physiological aspects</topic><topic>Research Paper</topic><topic>Scientific imaging</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Satou, Motoyasu</creatorcontrib><creatorcontrib>Hayashi, Keitaro</creatorcontrib><creatorcontrib>Nakamura, Yusuke</creatorcontrib><creatorcontrib>Fujimaki, Mio</creatorcontrib><creatorcontrib>Horibata, Yasuhiro</creatorcontrib><creatorcontrib>Ando, Hiromi</creatorcontrib><creatorcontrib>Watanabe, Taiji</creatorcontrib><creatorcontrib>Shiobara, Taichi</creatorcontrib><creatorcontrib>Chibana, Kazuyuki</creatorcontrib><creatorcontrib>Takemasa, Akihiro</creatorcontrib><creatorcontrib>Sugimoto, Hiroyuki</creatorcontrib><creatorcontrib>Anzai, Naohiko</creatorcontrib><creatorcontrib>Ishii, Yoshiki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Yasuo</au><au>Satou, Motoyasu</au><au>Hayashi, Keitaro</au><au>Nakamura, Yusuke</au><au>Fujimaki, Mio</au><au>Horibata, Yasuhiro</au><au>Ando, Hiromi</au><au>Watanabe, Taiji</au><au>Shiobara, Taichi</au><au>Chibana, Kazuyuki</au><au>Takemasa, Akihiro</au><au>Sugimoto, Hiroyuki</au><au>Anzai, Naohiko</au><au>Ishii, Yoshiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>409</volume><issue>4</issue><spage>1007</spage><epage>1016</epage><pages>1007-1016</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS). Analysis revealed changes of the intensity and distribution of peaks at
m
/
z
782.5 and 798.5 in iPSC colonies during spontaneous differentiation. Two phosphatidylcholines (PCs) were identified: C
44
H
81
NO
8
P, PC(36:4)[M+H]+ at
m
/
z
782.5 and C
42
H
82
NO
8
P, PC(34:1)[M+K]+ at
m
/
z
798.5. The intensity of PC(36:4) showed an inverse relation between undifferentiated and differentiated iPSC colonies. PC(34:1) displayed a diffuse distribution in undifferentiated iPSC colonies, while it showed a concentric distribution in differentiated iPSC colonies, and was localized at the border of the differentiated and undifferentiated areas or the border between undifferentiated iPSC and feeder cells. These findings suggested that the distribution of lipids changes during the growth and differentiation of iPSCs and that MALDI-TOF-IMS was useful for analyzing these changes. PC(36:4) might play a role in maintaining pluripotency, while PC(34:1) might play a role in the differentiation and spread of iPSCs.
Graphical Abstract
MALDI Imaging for phosphatidylcholine distribution changes during sponteneous differentiaton of induced pluiripotent stem cells colonies</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27815610</pmid><doi>10.1007/s00216-016-0015-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2017-02, Vol.409 (4), p.1007-1016 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879999433 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Animals Antibodies Biochemistry Borders Cell culture Cell Differentiation Cell Line Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chromatography, High Pressure Liquid - methods Chromatography, Reverse-Phase - methods Colonies Desorption Differentiation Fibroblasts Food Science Imaging Immunohistochemistry Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Ionization Laboratory Medicine Lasers Lipids Mass spectrometry Medicine Metabolism Methods Mice Monitoring/Environmental Analysis Observations Phosphatase Phosphatidylcholines - metabolism Phospholipids Physiological aspects Research Paper Scientific imaging Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Stem cells |
title | Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix-assisted%20laser%20desorption/ionization%20imaging%20mass%20spectrometry%20reveals%20changes%20of%20phospholipid%20distribution%20in%20induced%20pluripotent%20stem%20cell%20colony%20differentiation&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Shimizu,%20Yasuo&rft.date=2017-02-01&rft.volume=409&rft.issue=4&rft.spage=1007&rft.epage=1016&rft.pages=1007-1016&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-016-0015-x&rft_dat=%3Cgale_proqu%3EA550916094%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865253711&rft_id=info:pmid/27815610&rft_galeid=A550916094&rfr_iscdi=true |