Performance enhanced image steganography systems using transforms and optimization techniques

Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017, Vol.76 (1), p.415-436
Hauptverfasser: Uma Maheswari, S., Jude Hemanth, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 1
container_start_page 415
container_title Multimedia tools and applications
container_volume 76
creator Uma Maheswari, S.
Jude Hemanth, D.
description Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.
doi_str_mv 10.1007/s11042-015-3035-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879997020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4297120821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuAGzfVm6RJ2qUM_sGALnQpIZMmnQ7TtCbtYnx6U-pCBFf3Bs735XIQuiRwQwDkbSQEcpoB4RkDxjNyhBaES5ZJSclx2lkBmeRATtFZjDsAIjjNF-jj1QbXhVZ7Y7H122lWuGl1bXEcbK19Vwfdbw84HtK7jXiMja_xELSPUzBi7Svc9UPTNl96aDqPB2u2vvkcbTxHJ07vo734mUv0_nD_tnrK1i-Pz6u7dWZYXg4ZtaYqXA58IzYbw6nVQrvCVmW60RmTM1uBAOkEE1DRSkhBjCvA5aysGM9LtkTXc28fuunfQbVNNHa_1952Y1SkkGVZSqCQ0Ks_6K4bg0_XJYqLghSCToVkpkzoYgzWqT4kKeGgCKhJuJqFqyRcTcIVSRk6Z2JifW3Dr-Z_Q9-oL4TS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856818629</pqid></control><display><type>article</type><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Uma Maheswari, S. ; Jude Hemanth, D.</creator><creatorcontrib>Uma Maheswari, S. ; Jude Hemanth, D.</creatorcontrib><description>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-015-3035-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Bar codes ; Computer Communication Networks ; Computer Science ; Cryptography ; Data Structures and Information Theory ; Fourier transforms ; Genetic algorithms ; Image processing systems ; Image quality ; Inventors ; Layouts ; Multimedia Information Systems ; Optimization ; Optimization techniques ; Performance enhancement ; Special Purpose and Application-Based Systems ; Steganography ; Studies ; Swarm intelligence ; Transforms ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2017, Vol.76 (1), p.415-436</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</citedby><cites>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-015-3035-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-015-3035-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Uma Maheswari, S.</creatorcontrib><creatorcontrib>Jude Hemanth, D.</creatorcontrib><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</description><subject>Analysis</subject><subject>Bar codes</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Data Structures and Information Theory</subject><subject>Fourier transforms</subject><subject>Genetic algorithms</subject><subject>Image processing systems</subject><subject>Image quality</subject><subject>Inventors</subject><subject>Layouts</subject><subject>Multimedia Information Systems</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Performance enhancement</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Steganography</subject><subject>Studies</subject><subject>Swarm intelligence</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KxDAURoMoOI4-gLuAGzfVm6RJ2qUM_sGALnQpIZMmnQ7TtCbtYnx6U-pCBFf3Bs735XIQuiRwQwDkbSQEcpoB4RkDxjNyhBaES5ZJSclx2lkBmeRATtFZjDsAIjjNF-jj1QbXhVZ7Y7H122lWuGl1bXEcbK19Vwfdbw84HtK7jXiMja_xELSPUzBi7Svc9UPTNl96aDqPB2u2vvkcbTxHJ07vo734mUv0_nD_tnrK1i-Pz6u7dWZYXg4ZtaYqXA58IzYbw6nVQrvCVmW60RmTM1uBAOkEE1DRSkhBjCvA5aysGM9LtkTXc28fuunfQbVNNHa_1952Y1SkkGVZSqCQ0Ks_6K4bg0_XJYqLghSCToVkpkzoYgzWqT4kKeGgCKhJuJqFqyRcTcIVSRk6Z2JifW3Dr-Z_Q9-oL4TS</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Uma Maheswari, S.</creator><creator>Jude Hemanth, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><author>Uma Maheswari, S. ; Jude Hemanth, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Bar codes</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Data Structures and Information Theory</topic><topic>Fourier transforms</topic><topic>Genetic algorithms</topic><topic>Image processing systems</topic><topic>Image quality</topic><topic>Inventors</topic><topic>Layouts</topic><topic>Multimedia Information Systems</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Performance enhancement</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Steganography</topic><topic>Studies</topic><topic>Swarm intelligence</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uma Maheswari, S.</creatorcontrib><creatorcontrib>Jude Hemanth, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uma Maheswari, S.</au><au>Jude Hemanth, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance enhanced image steganography systems using transforms and optimization techniques</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017</date><risdate>2017</risdate><volume>76</volume><issue>1</issue><spage>415</spage><epage>436</epage><pages>415-436</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-015-3035-1</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017, Vol.76 (1), p.415-436
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_miscellaneous_1879997020
source SpringerLink Journals - AutoHoldings
subjects Analysis
Bar codes
Computer Communication Networks
Computer Science
Cryptography
Data Structures and Information Theory
Fourier transforms
Genetic algorithms
Image processing systems
Image quality
Inventors
Layouts
Multimedia Information Systems
Optimization
Optimization techniques
Performance enhancement
Special Purpose and Application-Based Systems
Steganography
Studies
Swarm intelligence
Transforms
Wavelet transforms
title Performance enhanced image steganography systems using transforms and optimization techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20enhanced%20image%20steganography%20systems%20using%20transforms%20and%20optimization%20techniques&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Uma%20Maheswari,%20S.&rft.date=2017&rft.volume=76&rft.issue=1&rft.spage=415&rft.epage=436&rft.pages=415-436&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-015-3035-1&rft_dat=%3Cproquest_cross%3E4297120821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856818629&rft_id=info:pmid/&rfr_iscdi=true