Performance enhanced image steganography systems using transforms and optimization techniques
Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applicatio...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2017, Vol.76 (1), p.415-436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 1 |
container_start_page | 415 |
container_title | Multimedia tools and applications |
container_volume | 76 |
creator | Uma Maheswari, S. Jude Hemanth, D. |
description | Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications. |
doi_str_mv | 10.1007/s11042-015-3035-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879997020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4297120821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI4-gLuAGzfVm6RJ2qUM_sGALnQpIZMmnQ7TtCbtYnx6U-pCBFf3Bs735XIQuiRwQwDkbSQEcpoB4RkDxjNyhBaES5ZJSclx2lkBmeRATtFZjDsAIjjNF-jj1QbXhVZ7Y7H122lWuGl1bXEcbK19Vwfdbw84HtK7jXiMja_xELSPUzBi7Svc9UPTNl96aDqPB2u2vvkcbTxHJ07vo734mUv0_nD_tnrK1i-Pz6u7dWZYXg4ZtaYqXA58IzYbw6nVQrvCVmW60RmTM1uBAOkEE1DRSkhBjCvA5aysGM9LtkTXc28fuunfQbVNNHa_1952Y1SkkGVZSqCQ0Ks_6K4bg0_XJYqLghSCToVkpkzoYgzWqT4kKeGgCKhJuJqFqyRcTcIVSRk6Z2JifW3Dr-Z_Q9-oL4TS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856818629</pqid></control><display><type>article</type><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Uma Maheswari, S. ; Jude Hemanth, D.</creator><creatorcontrib>Uma Maheswari, S. ; Jude Hemanth, D.</creatorcontrib><description>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-015-3035-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Bar codes ; Computer Communication Networks ; Computer Science ; Cryptography ; Data Structures and Information Theory ; Fourier transforms ; Genetic algorithms ; Image processing systems ; Image quality ; Inventors ; Layouts ; Multimedia Information Systems ; Optimization ; Optimization techniques ; Performance enhancement ; Special Purpose and Application-Based Systems ; Steganography ; Studies ; Swarm intelligence ; Transforms ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2017, Vol.76 (1), p.415-436</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</citedby><cites>FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-015-3035-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-015-3035-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Uma Maheswari, S.</creatorcontrib><creatorcontrib>Jude Hemanth, D.</creatorcontrib><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</description><subject>Analysis</subject><subject>Bar codes</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Data Structures and Information Theory</subject><subject>Fourier transforms</subject><subject>Genetic algorithms</subject><subject>Image processing systems</subject><subject>Image quality</subject><subject>Inventors</subject><subject>Layouts</subject><subject>Multimedia Information Systems</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Performance enhancement</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Steganography</subject><subject>Studies</subject><subject>Swarm intelligence</subject><subject>Transforms</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KxDAURoMoOI4-gLuAGzfVm6RJ2qUM_sGALnQpIZMmnQ7TtCbtYnx6U-pCBFf3Bs735XIQuiRwQwDkbSQEcpoB4RkDxjNyhBaES5ZJSclx2lkBmeRATtFZjDsAIjjNF-jj1QbXhVZ7Y7H122lWuGl1bXEcbK19Vwfdbw84HtK7jXiMja_xELSPUzBi7Svc9UPTNl96aDqPB2u2vvkcbTxHJ07vo734mUv0_nD_tnrK1i-Pz6u7dWZYXg4ZtaYqXA58IzYbw6nVQrvCVmW60RmTM1uBAOkEE1DRSkhBjCvA5aysGM9LtkTXc28fuunfQbVNNHa_1952Y1SkkGVZSqCQ0Ks_6K4bg0_XJYqLghSCToVkpkzoYgzWqT4kKeGgCKhJuJqFqyRcTcIVSRk6Z2JifW3Dr-Z_Q9-oL4TS</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Uma Maheswari, S.</creator><creator>Jude Hemanth, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Performance enhanced image steganography systems using transforms and optimization techniques</title><author>Uma Maheswari, S. ; Jude Hemanth, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2ecd8f405b6bbc52ea6af8ed9652fcc43ed0607f6360d2d6761cf80f439d35493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Bar codes</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Data Structures and Information Theory</topic><topic>Fourier transforms</topic><topic>Genetic algorithms</topic><topic>Image processing systems</topic><topic>Image quality</topic><topic>Inventors</topic><topic>Layouts</topic><topic>Multimedia Information Systems</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Performance enhancement</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Steganography</topic><topic>Studies</topic><topic>Swarm intelligence</topic><topic>Transforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uma Maheswari, S.</creatorcontrib><creatorcontrib>Jude Hemanth, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uma Maheswari, S.</au><au>Jude Hemanth, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance enhanced image steganography systems using transforms and optimization techniques</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017</date><risdate>2017</risdate><volume>76</volume><issue>1</issue><spage>415</spage><epage>436</epage><pages>415-436</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-015-3035-1</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2017, Vol.76 (1), p.415-436 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879997020 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Bar codes Computer Communication Networks Computer Science Cryptography Data Structures and Information Theory Fourier transforms Genetic algorithms Image processing systems Image quality Inventors Layouts Multimedia Information Systems Optimization Optimization techniques Performance enhancement Special Purpose and Application-Based Systems Steganography Studies Swarm intelligence Transforms Wavelet transforms |
title | Performance enhanced image steganography systems using transforms and optimization techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20enhanced%20image%20steganography%20systems%20using%20transforms%20and%20optimization%20techniques&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Uma%20Maheswari,%20S.&rft.date=2017&rft.volume=76&rft.issue=1&rft.spage=415&rft.epage=436&rft.pages=415-436&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-015-3035-1&rft_dat=%3Cproquest_cross%3E4297120821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856818629&rft_id=info:pmid/&rfr_iscdi=true |