An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis

Rolling bearings, as important machinery components, strongly affect the operation of machines. Early bearing fault diagnosis methods commonly take time–frequency analysis as the fundamental basis, therein searching for characteristic fault frequencies based on bearing kinematics to identify fault l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural health monitoring 2017-01, Vol.16 (1), p.39-49
Hauptverfasser: Cui, Hongyu, Qiao, Yuanying, Yin, Yumei, Hong, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 39
container_title Structural health monitoring
container_volume 16
creator Cui, Hongyu
Qiao, Yuanying
Yin, Yumei
Hong, Ming
description Rolling bearings, as important machinery components, strongly affect the operation of machines. Early bearing fault diagnosis methods commonly take time–frequency analysis as the fundamental basis, therein searching for characteristic fault frequencies based on bearing kinematics to identify fault locations. However, due to mode mixing, the characteristic frequencies are usually masked by normal frequencies and thus are difficult to extract. After time–frequency decomposition, the impact signal frequency can be distributed among multiple separation functions according to the mode mixing caused by the impact signal; therefore, it is possible to search for the shared frequency peak value in these separation functions to diagnose bearing faults. Using the wavelet transform, time–frequency analysis and blind source separation theory, this article presents a new method of determining shared frequencies, followed by identifying the faulty parts of bearings. Compared to fast independent component analysis, the sparse component analysis was better able to extract fault characteristics. The numerical simulation and the practical application test in this article obtained satisfactory results when combining the wavelet transform, intrinsic time-scale decomposition and linear clustering sparse component analysis, thereby proving the validity of this method.
doi_str_mv 10.1177/1475921716661310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879996846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475921716661310</sage_id><sourcerecordid>1879996846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d2209342a9008655ac3f74664991b0fdac2d494108823085c5346557f3864a143</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePebopZpp0nwcl8UvWPCi5zLbpiVLm9Skq-x_b5b1JAgD7zHzewMzhNwCuwdQ6gGEqkwJCqSUwIGdkQUoAQUHqc-zz-PiOL8kVyntGMtWyQXZrTx1_sum2fU4u-BpLotxONBtFud72uF-mGnrsPchuUS3mGx7xL7xyw52pnNEn7oQR4q-pWnCmCxtwjgFb_2cmzgccvCaXHQ4JHvzq0vy8fT4vn4pNm_Pr-vVpmg4iLloy5IZLko0jGlZVdjwTgkphTGwZV2LTdkKI4BpXXKmq6biImOq41oKBMGX5O60d4rhc58vq0eXGjsM6G3Ypxq0MsZILWRG2QltYkgp2q6eohsxHmpg9fGt9d-35khxiiTsbb0L-5jPS__zP52_dxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879996846</pqid></control><display><type>article</type><title>An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis</title><source>SAGE Complete A-Z List</source><creator>Cui, Hongyu ; Qiao, Yuanying ; Yin, Yumei ; Hong, Ming</creator><creatorcontrib>Cui, Hongyu ; Qiao, Yuanying ; Yin, Yumei ; Hong, Ming</creatorcontrib><description>Rolling bearings, as important machinery components, strongly affect the operation of machines. Early bearing fault diagnosis methods commonly take time–frequency analysis as the fundamental basis, therein searching for characteristic fault frequencies based on bearing kinematics to identify fault locations. However, due to mode mixing, the characteristic frequencies are usually masked by normal frequencies and thus are difficult to extract. After time–frequency decomposition, the impact signal frequency can be distributed among multiple separation functions according to the mode mixing caused by the impact signal; therefore, it is possible to search for the shared frequency peak value in these separation functions to diagnose bearing faults. Using the wavelet transform, time–frequency analysis and blind source separation theory, this article presents a new method of determining shared frequencies, followed by identifying the faulty parts of bearings. Compared to fast independent component analysis, the sparse component analysis was better able to extract fault characteristics. The numerical simulation and the practical application test in this article obtained satisfactory results when combining the wavelet transform, intrinsic time-scale decomposition and linear clustering sparse component analysis, thereby proving the validity of this method.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/1475921716661310</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bearing ; Fault diagnosis ; Mathematical analysis ; Mathematical models ; Roller bearings ; Searching ; Separation ; Wavelet transforms</subject><ispartof>Structural health monitoring, 2017-01, Vol.16 (1), p.39-49</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-d2209342a9008655ac3f74664991b0fdac2d494108823085c5346557f3864a143</citedby><cites>FETCH-LOGICAL-c314t-d2209342a9008655ac3f74664991b0fdac2d494108823085c5346557f3864a143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475921716661310$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475921716661310$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Cui, Hongyu</creatorcontrib><creatorcontrib>Qiao, Yuanying</creatorcontrib><creatorcontrib>Yin, Yumei</creatorcontrib><creatorcontrib>Hong, Ming</creatorcontrib><title>An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis</title><title>Structural health monitoring</title><description>Rolling bearings, as important machinery components, strongly affect the operation of machines. Early bearing fault diagnosis methods commonly take time–frequency analysis as the fundamental basis, therein searching for characteristic fault frequencies based on bearing kinematics to identify fault locations. However, due to mode mixing, the characteristic frequencies are usually masked by normal frequencies and thus are difficult to extract. After time–frequency decomposition, the impact signal frequency can be distributed among multiple separation functions according to the mode mixing caused by the impact signal; therefore, it is possible to search for the shared frequency peak value in these separation functions to diagnose bearing faults. Using the wavelet transform, time–frequency analysis and blind source separation theory, this article presents a new method of determining shared frequencies, followed by identifying the faulty parts of bearings. Compared to fast independent component analysis, the sparse component analysis was better able to extract fault characteristics. The numerical simulation and the practical application test in this article obtained satisfactory results when combining the wavelet transform, intrinsic time-scale decomposition and linear clustering sparse component analysis, thereby proving the validity of this method.</description><subject>Bearing</subject><subject>Fault diagnosis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Roller bearings</subject><subject>Searching</subject><subject>Separation</subject><subject>Wavelet transforms</subject><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePebopZpp0nwcl8UvWPCi5zLbpiVLm9Skq-x_b5b1JAgD7zHzewMzhNwCuwdQ6gGEqkwJCqSUwIGdkQUoAQUHqc-zz-PiOL8kVyntGMtWyQXZrTx1_sum2fU4u-BpLotxONBtFud72uF-mGnrsPchuUS3mGx7xL7xyw52pnNEn7oQR4q-pWnCmCxtwjgFb_2cmzgccvCaXHQ4JHvzq0vy8fT4vn4pNm_Pr-vVpmg4iLloy5IZLko0jGlZVdjwTgkphTGwZV2LTdkKI4BpXXKmq6biImOq41oKBMGX5O60d4rhc58vq0eXGjsM6G3Ypxq0MsZILWRG2QltYkgp2q6eohsxHmpg9fGt9d-35khxiiTsbb0L-5jPS__zP52_dxQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Cui, Hongyu</creator><creator>Qiao, Yuanying</creator><creator>Yin, Yumei</creator><creator>Hong, Ming</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201701</creationdate><title>An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis</title><author>Cui, Hongyu ; Qiao, Yuanying ; Yin, Yumei ; Hong, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d2209342a9008655ac3f74664991b0fdac2d494108823085c5346557f3864a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bearing</topic><topic>Fault diagnosis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Roller bearings</topic><topic>Searching</topic><topic>Separation</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Hongyu</creatorcontrib><creatorcontrib>Qiao, Yuanying</creatorcontrib><creatorcontrib>Yin, Yumei</creatorcontrib><creatorcontrib>Hong, Ming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Hongyu</au><au>Qiao, Yuanying</au><au>Yin, Yumei</au><au>Hong, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis</atitle><jtitle>Structural health monitoring</jtitle><date>2017-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>Rolling bearings, as important machinery components, strongly affect the operation of machines. Early bearing fault diagnosis methods commonly take time–frequency analysis as the fundamental basis, therein searching for characteristic fault frequencies based on bearing kinematics to identify fault locations. However, due to mode mixing, the characteristic frequencies are usually masked by normal frequencies and thus are difficult to extract. After time–frequency decomposition, the impact signal frequency can be distributed among multiple separation functions according to the mode mixing caused by the impact signal; therefore, it is possible to search for the shared frequency peak value in these separation functions to diagnose bearing faults. Using the wavelet transform, time–frequency analysis and blind source separation theory, this article presents a new method of determining shared frequencies, followed by identifying the faulty parts of bearings. Compared to fast independent component analysis, the sparse component analysis was better able to extract fault characteristics. The numerical simulation and the practical application test in this article obtained satisfactory results when combining the wavelet transform, intrinsic time-scale decomposition and linear clustering sparse component analysis, thereby proving the validity of this method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475921716661310</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural health monitoring, 2017-01, Vol.16 (1), p.39-49
issn 1475-9217
1741-3168
language eng
recordid cdi_proquest_miscellaneous_1879996846
source SAGE Complete A-Z List
subjects Bearing
Fault diagnosis
Mathematical analysis
Mathematical models
Roller bearings
Searching
Separation
Wavelet transforms
title An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20early%20bearing%20fault%20diagnosis%20based%20on%20wavelet%20transform%20and%20sparse%20component%20analysis&rft.jtitle=Structural%20health%20monitoring&rft.au=Cui,%20Hongyu&rft.date=2017-01&rft.volume=16&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/1475921716661310&rft_dat=%3Cproquest_cross%3E1879996846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879996846&rft_id=info:pmid/&rft_sage_id=10.1177_1475921716661310&rfr_iscdi=true