Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope
For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which deg...
Gespeichert in:
Veröffentlicht in: | RSC advances 2017, Vol.7 (12), p.6943-6949 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6949 |
---|---|
container_issue | 12 |
container_start_page | 6943 |
container_title | RSC advances |
container_volume | 7 |
creator | Choi, Woosuk Shehzad, Muhammad Arslan Park, Sanghoon Seo, Yongho |
description | For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which degrade the intrinsic electrical and optical properties of devices. In this work, we report the effect of mechanical cleaning
via
contact mode atomic force microscopy (AFM) on the surface morphology and electrical behavior of chemical-vapor-deposition grown graphene. An AFM tip with large contact force was used to scan, and multiple scanning was performed to remove the residues of PMMA. Raman mapping was incorporated to confirm the cleaning effect using AFM. Transconductance properties associated with a field-effect-transistor device based on the cleaned graphene were analyzed. It was observed that charge-neutrality point was shifted towards zero gate voltage and the charge carrier mobility was increased. We claim that our technique provides a facile route to fabricate devices with less polymer residue and higher efficiency. |
doi_str_mv | 10.1039/C6RA27436F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879996332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879996332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-80fb95b7b409bf2c73a28e74b077aba5776e119172ebfb467057ebd466a93a403</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOZe_AR5FKGaP22yPI7qdLChiPpakuxmVtukJq3gt7djgt6Xew787uVwEDqn5IoSrq5L8bRgMudieYQmjOQiY0So43_6FM1SeifjiIIyQSfoY-VdM4C3gIPDEdrwVfsdftxsFqNL9XaAhIPHaYhOH6Dy9Qbvou7ewAMe0h7X2Abfa9tnbdgC1n1oa4tdiOPFqGJINnRwhk6cbhLMfvcUvSxvn8v7bP1wtyoX68xyQvpsTpxRhZEmJ8o4ZiXXbA4yN0RKbXQhpQBKFZUMjDO5kKSQYLa5EFpxnRM-RReHv10Mn2P-vmrrZKFptIcwpIrOpVJKcM5G9PKA7jOmCK7qYt3q-F1RUu1Lrf5K5T8Rc2ks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879996332</pqid></control><display><type>article</type><title>Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Woosuk ; Shehzad, Muhammad Arslan ; Park, Sanghoon ; Seo, Yongho</creator><creatorcontrib>Choi, Woosuk ; Shehzad, Muhammad Arslan ; Park, Sanghoon ; Seo, Yongho</creatorcontrib><description>For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which degrade the intrinsic electrical and optical properties of devices. In this work, we report the effect of mechanical cleaning
via
contact mode atomic force microscopy (AFM) on the surface morphology and electrical behavior of chemical-vapor-deposition grown graphene. An AFM tip with large contact force was used to scan, and multiple scanning was performed to remove the residues of PMMA. Raman mapping was incorporated to confirm the cleaning effect using AFM. Transconductance properties associated with a field-effect-transistor device based on the cleaned graphene were analyzed. It was observed that charge-neutrality point was shifted towards zero gate voltage and the charge carrier mobility was increased. We claim that our technique provides a facile route to fabricate devices with less polymer residue and higher efficiency.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/C6RA27436F</identifier><language>eng</language><subject>Atomic force microscopes ; Atomic force microscopy ; Cleaning ; Devices ; Graphene ; Lithography ; Polymethyl methacrylates ; Residues</subject><ispartof>RSC advances, 2017, Vol.7 (12), p.6943-6949</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-80fb95b7b409bf2c73a28e74b077aba5776e119172ebfb467057ebd466a93a403</citedby><cites>FETCH-LOGICAL-c300t-80fb95b7b409bf2c73a28e74b077aba5776e119172ebfb467057ebd466a93a403</cites><orcidid>0000-0002-5695-5493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Shehzad, Muhammad Arslan</creatorcontrib><creatorcontrib>Park, Sanghoon</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><title>Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope</title><title>RSC advances</title><description>For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which degrade the intrinsic electrical and optical properties of devices. In this work, we report the effect of mechanical cleaning
via
contact mode atomic force microscopy (AFM) on the surface morphology and electrical behavior of chemical-vapor-deposition grown graphene. An AFM tip with large contact force was used to scan, and multiple scanning was performed to remove the residues of PMMA. Raman mapping was incorporated to confirm the cleaning effect using AFM. Transconductance properties associated with a field-effect-transistor device based on the cleaned graphene were analyzed. It was observed that charge-neutrality point was shifted towards zero gate voltage and the charge carrier mobility was increased. We claim that our technique provides a facile route to fabricate devices with less polymer residue and higher efficiency.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Cleaning</subject><subject>Devices</subject><subject>Graphene</subject><subject>Lithography</subject><subject>Polymethyl methacrylates</subject><subject>Residues</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOOZe_AR5FKGaP22yPI7qdLChiPpakuxmVtukJq3gt7djgt6Xew787uVwEDqn5IoSrq5L8bRgMudieYQmjOQiY0So43_6FM1SeifjiIIyQSfoY-VdM4C3gIPDEdrwVfsdftxsFqNL9XaAhIPHaYhOH6Dy9Qbvou7ewAMe0h7X2Abfa9tnbdgC1n1oa4tdiOPFqGJINnRwhk6cbhLMfvcUvSxvn8v7bP1wtyoX68xyQvpsTpxRhZEmJ8o4ZiXXbA4yN0RKbXQhpQBKFZUMjDO5kKSQYLa5EFpxnRM-RReHv10Mn2P-vmrrZKFptIcwpIrOpVJKcM5G9PKA7jOmCK7qYt3q-F1RUu1Lrf5K5T8Rc2ks</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Choi, Woosuk</creator><creator>Shehzad, Muhammad Arslan</creator><creator>Park, Sanghoon</creator><creator>Seo, Yongho</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5695-5493</orcidid></search><sort><creationdate>2017</creationdate><title>Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope</title><author>Choi, Woosuk ; Shehzad, Muhammad Arslan ; Park, Sanghoon ; Seo, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-80fb95b7b409bf2c73a28e74b077aba5776e119172ebfb467057ebd466a93a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Cleaning</topic><topic>Devices</topic><topic>Graphene</topic><topic>Lithography</topic><topic>Polymethyl methacrylates</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Shehzad, Muhammad Arslan</creatorcontrib><creatorcontrib>Park, Sanghoon</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Woosuk</au><au>Shehzad, Muhammad Arslan</au><au>Park, Sanghoon</au><au>Seo, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope</atitle><jtitle>RSC advances</jtitle><date>2017</date><risdate>2017</risdate><volume>7</volume><issue>12</issue><spage>6943</spage><epage>6949</epage><pages>6943-6949</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>For device fabrication based on 2D materials such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), polymethyl methacrylate (PMMA) is conventionally used in the wet transfer and lithography processes. All these processes are sources of polymer residue, which degrade the intrinsic electrical and optical properties of devices. In this work, we report the effect of mechanical cleaning
via
contact mode atomic force microscopy (AFM) on the surface morphology and electrical behavior of chemical-vapor-deposition grown graphene. An AFM tip with large contact force was used to scan, and multiple scanning was performed to remove the residues of PMMA. Raman mapping was incorporated to confirm the cleaning effect using AFM. Transconductance properties associated with a field-effect-transistor device based on the cleaned graphene were analyzed. It was observed that charge-neutrality point was shifted towards zero gate voltage and the charge carrier mobility was increased. We claim that our technique provides a facile route to fabricate devices with less polymer residue and higher efficiency.</abstract><doi>10.1039/C6RA27436F</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5695-5493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2017, Vol.7 (12), p.6943-6949 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879996332 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atomic force microscopes Atomic force microscopy Cleaning Devices Graphene Lithography Polymethyl methacrylates Residues |
title | Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20removing%20PMMA%20residues%20on%20surface%20of%20CVD%20graphene%20using%20a%20contact-mode%20atomic%20force%20microscope&rft.jtitle=RSC%20advances&rft.au=Choi,%20Woosuk&rft.date=2017&rft.volume=7&rft.issue=12&rft.spage=6943&rft.epage=6949&rft.pages=6943-6949&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/C6RA27436F&rft_dat=%3Cproquest_cross%3E1879996332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879996332&rft_id=info:pmid/&rfr_iscdi=true |