Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange

The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε phase and a higher pressure NM ε ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (4), p.2826-2833
Hauptverfasser: Ramírez-Solís, A, Zicovich-Wilson, C M, Hernández-Lamoneda, R, Ochoa-Calle, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2833
container_issue 4
container_start_page 2826
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Ramírez-Solís, A
Zicovich-Wilson, C M
Hernández-Lamoneda, R
Ochoa-Calle, A J
description The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε phase and a higher pressure NM ε phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O molecules in the (O ) unit cell were studied. Full enthalpy-driven geometry optimizations of the (O ) unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O ) unit cell for the low-pressure regime of the ε phase.
doi_str_mv 10.1039/c6cp07445f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879995790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879995790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3819c366b488f0b208f6cd80c88a099dbbd9bb61842ee0c7eaeac8ccf04ba5e93</originalsourceid><addsrcrecordid>eNqNkUtu3DAQRInAQfxJNjmAwaVhQBNyJFHk0hjYsQED8SJZC_w0ZxhI5IRNBZ7cKAfwNXImy79ZZ9NdaLyqXhQhnzlbcFarL1bYLeuapvXvyBFvRF0pJpuDve7EITlG_MkY4y2vP5DDpWSiq0VzRP5exBI85JxGvY5QgqW_cUFjitX-8O-BbjcagSZPMQ3B0XS_W0Nc0DvIIbkZcRAxlB31U7QlpKgHWjaQ8o5imVwApBOGuKaaDsnqIfwBR3VJ42w1GgNShEJ1dE8umtPw_AvutS3ztBsd1_CRvPd6QPj0uk_Ij6vL76vr6vbb15vVxW1la8FLVUuuZiVMI6VnZsmkF9ZJZqXUTClnjFPGCC6bJQCzHWjQVlrrWWN0C6o-IWcvuducfk2ApR8DWhgGHSFN2HPZKaXaTrH_QFshRctUN6PnL6jNCTGD77c5jDrves76pxb7lVjdPbd4NcOnr7mTGcHt0bfa6kcW_JxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856865097</pqid></control><display><type>article</type><title>Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ramírez-Solís, A ; Zicovich-Wilson, C M ; Hernández-Lamoneda, R ; Ochoa-Calle, A J</creator><creatorcontrib>Ramírez-Solís, A ; Zicovich-Wilson, C M ; Hernández-Lamoneda, R ; Ochoa-Calle, A J</creatorcontrib><description>The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε phase and a higher pressure NM ε phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O molecules in the (O ) unit cell were studied. Full enthalpy-driven geometry optimizations of the (O ) unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O ) unit cell for the low-pressure regime of the ε phase.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp07445f</identifier><identifier>PMID: 28067364</identifier><language>eng</language><publisher>England</publisher><subject>Antiferromagnetism ; Coupling (molecular) ; Density functional theory ; Evolution ; Lattice parameters ; Mathematical models ; Oxygen ; Unit cell</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017, Vol.19 (4), p.2826-2833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3819c366b488f0b208f6cd80c88a099dbbd9bb61842ee0c7eaeac8ccf04ba5e93</citedby><cites>FETCH-LOGICAL-c361t-3819c366b488f0b208f6cd80c88a099dbbd9bb61842ee0c7eaeac8ccf04ba5e93</cites><orcidid>0000-0003-0344-5745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28067364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramírez-Solís, A</creatorcontrib><creatorcontrib>Zicovich-Wilson, C M</creatorcontrib><creatorcontrib>Hernández-Lamoneda, R</creatorcontrib><creatorcontrib>Ochoa-Calle, A J</creatorcontrib><title>Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε phase and a higher pressure NM ε phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O molecules in the (O ) unit cell were studied. Full enthalpy-driven geometry optimizations of the (O ) unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O ) unit cell for the low-pressure regime of the ε phase.</description><subject>Antiferromagnetism</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Evolution</subject><subject>Lattice parameters</subject><subject>Mathematical models</subject><subject>Oxygen</subject><subject>Unit cell</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkUtu3DAQRInAQfxJNjmAwaVhQBNyJFHk0hjYsQED8SJZC_w0ZxhI5IRNBZ7cKAfwNXImy79ZZ9NdaLyqXhQhnzlbcFarL1bYLeuapvXvyBFvRF0pJpuDve7EITlG_MkY4y2vP5DDpWSiq0VzRP5exBI85JxGvY5QgqW_cUFjitX-8O-BbjcagSZPMQ3B0XS_W0Nc0DvIIbkZcRAxlB31U7QlpKgHWjaQ8o5imVwApBOGuKaaDsnqIfwBR3VJ42w1GgNShEJ1dE8umtPw_AvutS3ztBsd1_CRvPd6QPj0uk_Ij6vL76vr6vbb15vVxW1la8FLVUuuZiVMI6VnZsmkF9ZJZqXUTClnjFPGCC6bJQCzHWjQVlrrWWN0C6o-IWcvuducfk2ApR8DWhgGHSFN2HPZKaXaTrH_QFshRctUN6PnL6jNCTGD77c5jDrves76pxb7lVjdPbd4NcOnr7mTGcHt0bfa6kcW_JxQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ramírez-Solís, A</creator><creator>Zicovich-Wilson, C M</creator><creator>Hernández-Lamoneda, R</creator><creator>Ochoa-Calle, A J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0344-5745</orcidid></search><sort><creationdate>2017</creationdate><title>Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange</title><author>Ramírez-Solís, A ; Zicovich-Wilson, C M ; Hernández-Lamoneda, R ; Ochoa-Calle, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3819c366b488f0b208f6cd80c88a099dbbd9bb61842ee0c7eaeac8ccf04ba5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antiferromagnetism</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Evolution</topic><topic>Lattice parameters</topic><topic>Mathematical models</topic><topic>Oxygen</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Solís, A</creatorcontrib><creatorcontrib>Zicovich-Wilson, C M</creatorcontrib><creatorcontrib>Hernández-Lamoneda, R</creatorcontrib><creatorcontrib>Ochoa-Calle, A J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Solís, A</au><au>Zicovich-Wilson, C M</au><au>Hernández-Lamoneda, R</au><au>Ochoa-Calle, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>4</issue><spage>2826</spage><epage>2833</epage><pages>2826-2833</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε phase and a higher pressure NM ε phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O molecules in the (O ) unit cell were studied. Full enthalpy-driven geometry optimizations of the (O ) unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O ) unit cell for the low-pressure regime of the ε phase.</abstract><cop>England</cop><pmid>28067364</pmid><doi>10.1039/c6cp07445f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0344-5745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017, Vol.19 (4), p.2826-2833
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1879995790
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antiferromagnetism
Coupling (molecular)
Density functional theory
Evolution
Lattice parameters
Mathematical models
Oxygen
Unit cell
title Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferromagnetic%20vs.%20non-magnetic%20%CE%B5%20phase%20of%20solid%20oxygen.%20Periodic%20density%20functional%20theory%20studies%20using%20a%20localized%20atomic%20basis%20set%20and%20the%20role%20of%20exact%20exchange&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ram%C3%ADrez-Sol%C3%ADs,%20A&rft.date=2017&rft.volume=19&rft.issue=4&rft.spage=2826&rft.epage=2833&rft.pages=2826-2833&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp07445f&rft_dat=%3Cproquest_cross%3E1879995790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856865097&rft_id=info:pmid/28067364&rfr_iscdi=true