Rigorous estimates for the relegation algorithm
We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the clas...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2017, Vol.127 (1), p.1-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 127 |
creator | Sansottera, Marco Ceccaroni, Marta |
description | We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182,
2001
) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a
formal
way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case. |
doi_str_mv | 10.1007/s10569-016-9711-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879995182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879995182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKs_wNuCFy-xM8lmkzlK0SoUBNFzyG7Tdst2tybbg__eLOtBBMHTXL73ePMxdo1whwB6FhFUQRyw4KQRuThhE1RacMq1OWUTICG5IGXO2UWMOwBQQGrCZq_1pgvdMWY-9vXe9T5m6y5k_dZnwTd-4_q6azPXJKrut_tLdrZ2TfRX33fK3h8f3uZPfPmyeJ7fL3kljei5d1CqXEMJLgcUuspLnQtNFWnnRW7QSFfSirB0WJAhqIxDcEWpVxKkUHLKbsfeQ-g-jmmb3dex8k3jWp_WWjSaiBQa8Q-0MFJIpQb05he6646hTY8kShmTXAlKFI5UFboYg1_bQ0hqwqdFsINtO9q2ybYdbNuhWYyZmNh248OP5j9DX7f5f10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858847829</pqid></control><display><type>article</type><title>Rigorous estimates for the relegation algorithm</title><source>SpringerNature Complete Journals</source><creator>Sansottera, Marco ; Ceccaroni, Marta</creator><creatorcontrib>Sansottera, Marco ; Ceccaroni, Marta</creatorcontrib><description>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182,
2001
) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a
formal
way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-016-9711-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Algebra ; Algorithms ; Astronomy ; Astrophysics and Astroparticles ; Classical Mechanics ; Convergence ; Dynamical Systems and Ergodic Theory ; Estimates ; Exact solutions ; Geophysics/Geodesy ; Mathematical analysis ; Original Article ; Perturbation theory ; Physics ; Physics and Astronomy ; Theory ; Transformations</subject><ispartof>Celestial mechanics and dynamical astronomy, 2017, Vol.127 (1), p.1-18</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Celestial Mechanics and Dynamical Astronomy is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</citedby><cites>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-016-9711-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-016-9711-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sansottera, Marco</creatorcontrib><creatorcontrib>Ceccaroni, Marta</creatorcontrib><title>Rigorous estimates for the relegation algorithm</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182,
2001
) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a
formal
way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Convergence</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Estimates</subject><subject>Exact solutions</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical analysis</subject><subject>Original Article</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theory</subject><subject>Transformations</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEFLAzEQhYMoWKs_wNuCFy-xM8lmkzlK0SoUBNFzyG7Tdst2tybbg__eLOtBBMHTXL73ePMxdo1whwB6FhFUQRyw4KQRuThhE1RacMq1OWUTICG5IGXO2UWMOwBQQGrCZq_1pgvdMWY-9vXe9T5m6y5k_dZnwTd-4_q6azPXJKrut_tLdrZ2TfRX33fK3h8f3uZPfPmyeJ7fL3kljei5d1CqXEMJLgcUuspLnQtNFWnnRW7QSFfSirB0WJAhqIxDcEWpVxKkUHLKbsfeQ-g-jmmb3dex8k3jWp_WWjSaiBQa8Q-0MFJIpQb05he6646hTY8kShmTXAlKFI5UFboYg1_bQ0hqwqdFsINtO9q2ybYdbNuhWYyZmNh248OP5j9DX7f5f10</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Sansottera, Marco</creator><creator>Ceccaroni, Marta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Rigorous estimates for the relegation algorithm</title><author>Sansottera, Marco ; Ceccaroni, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Convergence</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Estimates</topic><topic>Exact solutions</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical analysis</topic><topic>Original Article</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansottera, Marco</creatorcontrib><creatorcontrib>Ceccaroni, Marta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansottera, Marco</au><au>Ceccaroni, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous estimates for the relegation algorithm</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2017</date><risdate>2017</risdate><volume>127</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182,
2001
) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a
formal
way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-016-9711-2</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2017, Vol.127 (1), p.1-18 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879995182 |
source | SpringerNature Complete Journals |
subjects | Aerospace Technology and Astronautics Algebra Algorithms Astronomy Astrophysics and Astroparticles Classical Mechanics Convergence Dynamical Systems and Ergodic Theory Estimates Exact solutions Geophysics/Geodesy Mathematical analysis Original Article Perturbation theory Physics Physics and Astronomy Theory Transformations |
title | Rigorous estimates for the relegation algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20estimates%20for%20the%20relegation%20algorithm&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Sansottera,%20Marco&rft.date=2017&rft.volume=127&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-016-9711-2&rft_dat=%3Cproquest_cross%3E1879995182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858847829&rft_id=info:pmid/&rfr_iscdi=true |