Rigorous estimates for the relegation algorithm

We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2017, Vol.127 (1), p.1-18
Hauptverfasser: Sansottera, Marco, Ceccaroni, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Celestial mechanics and dynamical astronomy
container_volume 127
creator Sansottera, Marco
Ceccaroni, Marta
description We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a formal way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.
doi_str_mv 10.1007/s10569-016-9711-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879995182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879995182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKs_wNuCFy-xM8lmkzlK0SoUBNFzyG7Tdst2tybbg__eLOtBBMHTXL73ePMxdo1whwB6FhFUQRyw4KQRuThhE1RacMq1OWUTICG5IGXO2UWMOwBQQGrCZq_1pgvdMWY-9vXe9T5m6y5k_dZnwTd-4_q6azPXJKrut_tLdrZ2TfRX33fK3h8f3uZPfPmyeJ7fL3kljei5d1CqXEMJLgcUuspLnQtNFWnnRW7QSFfSirB0WJAhqIxDcEWpVxKkUHLKbsfeQ-g-jmmb3dex8k3jWp_WWjSaiBQa8Q-0MFJIpQb05he6646hTY8kShmTXAlKFI5UFboYg1_bQ0hqwqdFsINtO9q2ybYdbNuhWYyZmNh248OP5j9DX7f5f10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858847829</pqid></control><display><type>article</type><title>Rigorous estimates for the relegation algorithm</title><source>SpringerNature Complete Journals</source><creator>Sansottera, Marco ; Ceccaroni, Marta</creator><creatorcontrib>Sansottera, Marco ; Ceccaroni, Marta</creatorcontrib><description>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a formal way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-016-9711-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Algebra ; Algorithms ; Astronomy ; Astrophysics and Astroparticles ; Classical Mechanics ; Convergence ; Dynamical Systems and Ergodic Theory ; Estimates ; Exact solutions ; Geophysics/Geodesy ; Mathematical analysis ; Original Article ; Perturbation theory ; Physics ; Physics and Astronomy ; Theory ; Transformations</subject><ispartof>Celestial mechanics and dynamical astronomy, 2017, Vol.127 (1), p.1-18</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Celestial Mechanics and Dynamical Astronomy is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</citedby><cites>FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-016-9711-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-016-9711-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sansottera, Marco</creatorcontrib><creatorcontrib>Ceccaroni, Marta</creatorcontrib><title>Rigorous estimates for the relegation algorithm</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a formal way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Convergence</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Estimates</subject><subject>Exact solutions</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical analysis</subject><subject>Original Article</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theory</subject><subject>Transformations</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEFLAzEQhYMoWKs_wNuCFy-xM8lmkzlK0SoUBNFzyG7Tdst2tybbg__eLOtBBMHTXL73ePMxdo1whwB6FhFUQRyw4KQRuThhE1RacMq1OWUTICG5IGXO2UWMOwBQQGrCZq_1pgvdMWY-9vXe9T5m6y5k_dZnwTd-4_q6azPXJKrut_tLdrZ2TfRX33fK3h8f3uZPfPmyeJ7fL3kljei5d1CqXEMJLgcUuspLnQtNFWnnRW7QSFfSirB0WJAhqIxDcEWpVxKkUHLKbsfeQ-g-jmmb3dex8k3jWp_WWjSaiBQa8Q-0MFJIpQb05he6646hTY8kShmTXAlKFI5UFboYg1_bQ0hqwqdFsINtO9q2ybYdbNuhWYyZmNh248OP5j9DX7f5f10</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Sansottera, Marco</creator><creator>Ceccaroni, Marta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Rigorous estimates for the relegation algorithm</title><author>Sansottera, Marco ; Ceccaroni, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ea0b5470b0a40127c4b74279c97ae248183ab9d91ba169890c8a10a6b7d303253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Convergence</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Estimates</topic><topic>Exact solutions</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical analysis</topic><topic>Original Article</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansottera, Marco</creatorcontrib><creatorcontrib>Ceccaroni, Marta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansottera, Marco</au><au>Ceccaroni, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous estimates for the relegation algorithm</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2017</date><risdate>2017</risdate><volume>127</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>We revisit the relegation algorithm by Deprit et al. (Celest. Mech. Dyn. Astron. 79:157–182, 2001 ) in the light of the rigorous Nekhoroshev’s like theory. This relatively recent algorithm is nowadays widely used for implementing closed form analytic perturbation theories, as it generalises the classical Birkhoff normalisation algorithm. The algorithm, here briefly explained by means of Lie transformations, has been so far introduced and used in a formal way, i.e. without providing any rigorous convergence or asymptotic estimates. The overall aim of this paper is to find such quantitative estimates and to show how the results about stability over exponentially long times can be recovered in a simple and effective way, at least in the non-resonant case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-016-9711-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2017, Vol.127 (1), p.1-18
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_miscellaneous_1879995182
source SpringerNature Complete Journals
subjects Aerospace Technology and Astronautics
Algebra
Algorithms
Astronomy
Astrophysics and Astroparticles
Classical Mechanics
Convergence
Dynamical Systems and Ergodic Theory
Estimates
Exact solutions
Geophysics/Geodesy
Mathematical analysis
Original Article
Perturbation theory
Physics
Physics and Astronomy
Theory
Transformations
title Rigorous estimates for the relegation algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20estimates%20for%20the%20relegation%20algorithm&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Sansottera,%20Marco&rft.date=2017&rft.volume=127&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-016-9711-2&rft_dat=%3Cproquest_cross%3E1879995182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858847829&rft_id=info:pmid/&rfr_iscdi=true