A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network

A self-constructing fuzzy neural network (SCFNN) has been successfully used for chaotic time series prediction in the literature. In this paper, we propose the strategy of adding a recurrent path in each node of the hidden layer of SCFNN, resulting in a self-constructing recurrent fuzzy neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-9
Hauptverfasser: Li, Qinghai, Lin, Rui-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2016
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2016
creator Li, Qinghai
Lin, Rui-Chang
description A self-constructing fuzzy neural network (SCFNN) has been successfully used for chaotic time series prediction in the literature. In this paper, we propose the strategy of adding a recurrent path in each node of the hidden layer of SCFNN, resulting in a self-constructing recurrent fuzzy neural network (SCRFNN). This novel network does not increase complexity in fuzzy inference or learning process. Specifically, the structure learning is based on partition of the input space, and the parameter learning is based on the supervised gradient descent method using a delta adaptation law. This novel network can also be applied for chaotic time series prediction including Logistic and Henon time series. More significantly, it features rapider convergence and higher prediction accuracy.
doi_str_mv 10.1155/2016/3542898
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879994976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4281580611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ff85fd8d4ece5ecebcc5348961e8b07ff4af526c7569ad01e88531e5f97067d43</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEvAhalzRJmxzH8BcMHbqBt5KlLy5za2fSMvzvzehA8OLh8R7hk8fji9A5JbeUCjFICc0GTPBUKnmAelRkLBGU54dxJilPaMrej9FJCEtCUiqo7KHJED_DFg83G19rs8C29ni00HXjDJ66NeA38A4CnngonWlcXeFZcNUHfgXTeg9VE_-3Xq9ia7a1_zxFR1avApztex_N7u-mo8dk_PLwNBqOE8MUaxJrpbClLDkYELHmxgjGpcooyDnJreXaijQzuciULkl8lYJREFblJMtLzvroqtsbD_9qITTF2gUDq5WuoG5DQWWulOIqzyK9_EOXdeureF1UgjCxWx3VTaeMr0PwYIuNd2vtvwtKil28xS7eYh9v5NcdX7iq1Fv3n77oNEQDVv9qSlPCJPsBhGqCxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850358531</pqid></control><display><type>article</type><title>A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Qinghai ; Lin, Rui-Chang</creator><contributor>Zhu, Lijun</contributor><creatorcontrib>Li, Qinghai ; Lin, Rui-Chang ; Zhu, Lijun</creatorcontrib><description>A self-constructing fuzzy neural network (SCFNN) has been successfully used for chaotic time series prediction in the literature. In this paper, we propose the strategy of adding a recurrent path in each node of the hidden layer of SCFNN, resulting in a self-constructing recurrent fuzzy neural network (SCRFNN). This novel network does not increase complexity in fuzzy inference or learning process. Specifically, the structure learning is based on partition of the input space, and the parameter learning is based on the supervised gradient descent method using a delta adaptation law. This novel network can also be applied for chaotic time series prediction including Logistic and Henon time series. More significantly, it features rapider convergence and higher prediction accuracy.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/3542898</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Architectural engineering ; Artificial neural networks ; Behavior ; Chaos theory ; Dynamical systems ; Economic models ; Fuzzy ; Fuzzy logic ; Learning ; Logistics ; Mathematical analysis ; Networks ; Neural networks ; Recurrent neural networks ; Simulation ; Studies ; Time series</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-9</ispartof><rights>Copyright © 2016 Qinghai Li and Rui-Chang Lin.</rights><rights>Copyright © 2016 Qinghai Li and Rui-Chang Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ff85fd8d4ece5ecebcc5348961e8b07ff4af526c7569ad01e88531e5f97067d43</citedby><cites>FETCH-LOGICAL-c393t-ff85fd8d4ece5ecebcc5348961e8b07ff4af526c7569ad01e88531e5f97067d43</cites><orcidid>0000-0001-9693-346X ; 0000-0002-1043-2080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Zhu, Lijun</contributor><creatorcontrib>Li, Qinghai</creatorcontrib><creatorcontrib>Lin, Rui-Chang</creatorcontrib><title>A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network</title><title>Mathematical problems in engineering</title><description>A self-constructing fuzzy neural network (SCFNN) has been successfully used for chaotic time series prediction in the literature. In this paper, we propose the strategy of adding a recurrent path in each node of the hidden layer of SCFNN, resulting in a self-constructing recurrent fuzzy neural network (SCRFNN). This novel network does not increase complexity in fuzzy inference or learning process. Specifically, the structure learning is based on partition of the input space, and the parameter learning is based on the supervised gradient descent method using a delta adaptation law. This novel network can also be applied for chaotic time series prediction including Logistic and Henon time series. More significantly, it features rapider convergence and higher prediction accuracy.</description><subject>Algorithms</subject><subject>Architectural engineering</subject><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Economic models</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Learning</subject><subject>Logistics</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>Simulation</subject><subject>Studies</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEvAhalzRJmxzH8BcMHbqBt5KlLy5za2fSMvzvzehA8OLh8R7hk8fji9A5JbeUCjFICc0GTPBUKnmAelRkLBGU54dxJilPaMrej9FJCEtCUiqo7KHJED_DFg83G19rs8C29ni00HXjDJ66NeA38A4CnngonWlcXeFZcNUHfgXTeg9VE_-3Xq9ia7a1_zxFR1avApztex_N7u-mo8dk_PLwNBqOE8MUaxJrpbClLDkYELHmxgjGpcooyDnJreXaijQzuciULkl8lYJREFblJMtLzvroqtsbD_9qITTF2gUDq5WuoG5DQWWulOIqzyK9_EOXdeureF1UgjCxWx3VTaeMr0PwYIuNd2vtvwtKil28xS7eYh9v5NcdX7iq1Fv3n77oNEQDVv9qSlPCJPsBhGqCxA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Li, Qinghai</creator><creator>Lin, Rui-Chang</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9693-346X</orcidid><orcidid>https://orcid.org/0000-0002-1043-2080</orcidid></search><sort><creationdate>20160101</creationdate><title>A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network</title><author>Li, Qinghai ; Lin, Rui-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ff85fd8d4ece5ecebcc5348961e8b07ff4af526c7569ad01e88531e5f97067d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Architectural engineering</topic><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Economic models</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Learning</topic><topic>Logistics</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>Simulation</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinghai</creatorcontrib><creatorcontrib>Lin, Rui-Chang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinghai</au><au>Lin, Rui-Chang</au><au>Zhu, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A self-constructing fuzzy neural network (SCFNN) has been successfully used for chaotic time series prediction in the literature. In this paper, we propose the strategy of adding a recurrent path in each node of the hidden layer of SCFNN, resulting in a self-constructing recurrent fuzzy neural network (SCRFNN). This novel network does not increase complexity in fuzzy inference or learning process. Specifically, the structure learning is based on partition of the input space, and the parameter learning is based on the supervised gradient descent method using a delta adaptation law. This novel network can also be applied for chaotic time series prediction including Logistic and Henon time series. More significantly, it features rapider convergence and higher prediction accuracy.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/3542898</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9693-346X</orcidid><orcidid>https://orcid.org/0000-0002-1043-2080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1879994976
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Architectural engineering
Artificial neural networks
Behavior
Chaos theory
Dynamical systems
Economic models
Fuzzy
Fuzzy logic
Learning
Logistics
Mathematical analysis
Networks
Neural networks
Recurrent neural networks
Simulation
Studies
Time series
title A New Approach for Chaotic Time Series Prediction Using Recurrent Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20Chaotic%20Time%20Series%20Prediction%20Using%20Recurrent%20Neural%20Network&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Li,%20Qinghai&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/3542898&rft_dat=%3Cproquest_cross%3E4281580611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850358531&rft_id=info:pmid/&rfr_iscdi=true