Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium–sulfur batteries

There is a growing demand to enhance the electrical conductivity of the cathode and to restrain the fast capacity decay during a charge-discharge process in lithium-sulfur (Li-S) batteries. This can be accomplished by developing novel methods for the synthesis of nanostructured materials that can ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (3), p.975-981
Hauptverfasser: Park, Seung-Keun, Lee, Jeongyeon, Hwang, Taejin, Piao, Yuanzhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a growing demand to enhance the electrical conductivity of the cathode and to restrain the fast capacity decay during a charge-discharge process in lithium-sulfur (Li-S) batteries. This can be accomplished by developing novel methods for the synthesis of nanostructured materials that can act as effective cathode hosts. In this study, monodisperse carbon nanocapsules with a diameter of similar to 20 nm anchored on a graphene nanosheet (MCNC/G) were prepared by a facile strategy, which involved mixing of iron-oleate and graphene, heat treatment, and finally, acid etching of iron oxide nanoparticles. This simple synthesis method could be suitable for mass production. We loaded MCNC/G with sulfur by a melting process, and tested the performance of the resulting MCNC/G-sulfur (MCNC/G-S) composites as the cathode material. As a result, the MCNC/G-S electrode infiltrated with 60 wt% sulfur delivers a high and stable reversible capacity of 525 mA h g-1 after 100 cycles at a 0.5 C-rate with good capacity retention and excellent rate capability (630.5 mA h g-1 at a high current density of 1C). The improved electrochemical performance could be attributed to the monodisperse carbon nanocapsules in the MCNC/G composite, which lead to small volume expansion and physical confinement of sulfur due to the void spaces inside the carbon nanocapsules during the charge-discharge process. Thus, these uniquely structured monodisperse carbon nanocapsules anchored on graphene nanosheets can be promising candidates for other energy storage applications.
ISSN:2050-7488
2050-7496
DOI:10.1039/c6ta08557a