Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph
The packing chromatic number χ ρ ( G ) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets Π 1 , … , Π k , where Π i , i ∈ [ k ] , is an i -packing. The following conjecture is posed and studied: if G is a subcubic graph, then χ ρ ( S ( G ) ) ≤ 5 , where...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2017-02, Vol.91 (1), p.169-184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 1 |
container_start_page | 169 |
container_title | Aequationes mathematicae |
container_volume | 91 |
creator | Brešar, Boštjan Klavžar, Sandi Rall, Douglas F. Wash, Kirsti |
description | The packing chromatic number
χ
ρ
(
G
)
of a graph
G
is the smallest integer
k
such that the vertex set of
G
can be partitioned into sets
Π
1
,
…
,
Π
k
, where
Π
i
,
i
∈
[
k
]
, is an
i
-packing. The following conjecture is posed and studied: if
G
is a subcubic graph, then
χ
ρ
(
S
(
G
)
)
≤
5
, where
S
(
G
) is the subdivision of
G
. The conjecture is proved for all generalized prisms of cycles. To get this result it is proved that if
G
is a generalized prism of a cycle, then
G
is (1, 1, 2, 2)-colorable if and only if
G
is not the Petersen graph. The validity of the conjecture is further proved for graphs that can be obtained from generalized prisms in such a way that one of the two
n
-cycles in the edge set of a generalized prism is replaced by a union of cycles among which at most one is a 5-cycle. The packing chromatic number of graphs obtained by subdividing each of its edges a fixed number of times is also considered. |
doi_str_mv | 10.1007/s00010-016-0461-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879994588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064685020</sourcerecordid><originalsourceid>FETCH-LOGICAL-p259t-eb1796172275d86d1263647dc28f5390c86ab30fe06dbea13035dd653ca72f63</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-AG8FLys0Okmar6MsfsGCe9h7SNN0t-tuW5P24q83ZQXB0_AyzwwzD0K3BB4IgHyMAEAAAxEYCkGwOkMzUlDASgM7R7OpjTXw4hJdxbhPiUrJZmiztu6zabeZ24XuaIfGZe14LH3IswXJSU5zeo9dd-hCgmKe2bZKqA3WDT4039PksPPZ2qcYfZttg-131-iitofob37rHG1enjfLN7z6eH1fPq1wT7kesC-J1IJISiWvlKgIFUwUsnJU1ZxpcErYkkHtQVSlt4QB41UlOHNW0lqwOVqc1vah-xp9HMyxic4fDrb13RgNUVJrXXClEnr3D913Y2jTcYaCKITiQCFR9ETFfnrXhz-KgJk8m5NnkzybybNR7AdJkm2K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064685020</pqid></control><display><type>article</type><title>Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph</title><source>Springer Nature - Complete Springer Journals</source><creator>Brešar, Boštjan ; Klavžar, Sandi ; Rall, Douglas F. ; Wash, Kirsti</creator><creatorcontrib>Brešar, Boštjan ; Klavžar, Sandi ; Rall, Douglas F. ; Wash, Kirsti</creatorcontrib><description>The packing chromatic number
χ
ρ
(
G
)
of a graph
G
is the smallest integer
k
such that the vertex set of
G
can be partitioned into sets
Π
1
,
…
,
Π
k
, where
Π
i
,
i
∈
[
k
]
, is an
i
-packing. The following conjecture is posed and studied: if
G
is a subcubic graph, then
χ
ρ
(
S
(
G
)
)
≤
5
, where
S
(
G
) is the subdivision of
G
. The conjecture is proved for all generalized prisms of cycles. To get this result it is proved that if
G
is a generalized prism of a cycle, then
G
is (1, 1, 2, 2)-colorable if and only if
G
is not the Petersen graph. The validity of the conjecture is further proved for graphs that can be obtained from generalized prisms in such a way that one of the two
n
-cycles in the edge set of a generalized prism is replaced by a union of cycles among which at most one is a 5-cycle. The packing chromatic number of graphs obtained by subdividing each of its edges a fixed number of times is also considered.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-016-0461-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Formulas (mathematics) ; Graphs ; Integers ; Mathematics ; Mathematics and Statistics ; Prisms ; Subdivisions ; Texts ; Unions</subject><ispartof>Aequationes mathematicae, 2017-02, Vol.91 (1), p.169-184</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p259t-eb1796172275d86d1263647dc28f5390c86ab30fe06dbea13035dd653ca72f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-016-0461-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-016-0461-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Rall, Douglas F.</creatorcontrib><creatorcontrib>Wash, Kirsti</creatorcontrib><title>Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>The packing chromatic number
χ
ρ
(
G
)
of a graph
G
is the smallest integer
k
such that the vertex set of
G
can be partitioned into sets
Π
1
,
…
,
Π
k
, where
Π
i
,
i
∈
[
k
]
, is an
i
-packing. The following conjecture is posed and studied: if
G
is a subcubic graph, then
χ
ρ
(
S
(
G
)
)
≤
5
, where
S
(
G
) is the subdivision of
G
. The conjecture is proved for all generalized prisms of cycles. To get this result it is proved that if
G
is a generalized prism of a cycle, then
G
is (1, 1, 2, 2)-colorable if and only if
G
is not the Petersen graph. The validity of the conjecture is further proved for graphs that can be obtained from generalized prisms in such a way that one of the two
n
-cycles in the edge set of a generalized prism is replaced by a union of cycles among which at most one is a 5-cycle. The packing chromatic number of graphs obtained by subdividing each of its edges a fixed number of times is also considered.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Formulas (mathematics)</subject><subject>Graphs</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Prisms</subject><subject>Subdivisions</subject><subject>Texts</subject><subject>Unions</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK7-AG8FLys0Okmar6MsfsGCe9h7SNN0t-tuW5P24q83ZQXB0_AyzwwzD0K3BB4IgHyMAEAAAxEYCkGwOkMzUlDASgM7R7OpjTXw4hJdxbhPiUrJZmiztu6zabeZ24XuaIfGZe14LH3IswXJSU5zeo9dd-hCgmKe2bZKqA3WDT4039PksPPZ2qcYfZttg-131-iitofob37rHG1enjfLN7z6eH1fPq1wT7kesC-J1IJISiWvlKgIFUwUsnJU1ZxpcErYkkHtQVSlt4QB41UlOHNW0lqwOVqc1vah-xp9HMyxic4fDrb13RgNUVJrXXClEnr3D913Y2jTcYaCKITiQCFR9ETFfnrXhz-KgJk8m5NnkzybybNR7AdJkm2K</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Brešar, Boštjan</creator><creator>Klavžar, Sandi</creator><creator>Rall, Douglas F.</creator><creator>Wash, Kirsti</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph</title><author>Brešar, Boštjan ; Klavžar, Sandi ; Rall, Douglas F. ; Wash, Kirsti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p259t-eb1796172275d86d1263647dc28f5390c86ab30fe06dbea13035dd653ca72f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Formulas (mathematics)</topic><topic>Graphs</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Prisms</topic><topic>Subdivisions</topic><topic>Texts</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Rall, Douglas F.</creatorcontrib><creatorcontrib>Wash, Kirsti</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brešar, Boštjan</au><au>Klavžar, Sandi</au><au>Rall, Douglas F.</au><au>Wash, Kirsti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>91</volume><issue>1</issue><spage>169</spage><epage>184</epage><pages>169-184</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>The packing chromatic number
χ
ρ
(
G
)
of a graph
G
is the smallest integer
k
such that the vertex set of
G
can be partitioned into sets
Π
1
,
…
,
Π
k
, where
Π
i
,
i
∈
[
k
]
, is an
i
-packing. The following conjecture is posed and studied: if
G
is a subcubic graph, then
χ
ρ
(
S
(
G
)
)
≤
5
, where
S
(
G
) is the subdivision of
G
. The conjecture is proved for all generalized prisms of cycles. To get this result it is proved that if
G
is a generalized prism of a cycle, then
G
is (1, 1, 2, 2)-colorable if and only if
G
is not the Petersen graph. The validity of the conjecture is further proved for graphs that can be obtained from generalized prisms in such a way that one of the two
n
-cycles in the edge set of a generalized prism is replaced by a union of cycles among which at most one is a 5-cycle. The packing chromatic number of graphs obtained by subdividing each of its edges a fixed number of times is also considered.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-016-0461-8</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9054 |
ispartof | Aequationes mathematicae, 2017-02, Vol.91 (1), p.169-184 |
issn | 0001-9054 1420-8903 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879994588 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Combinatorics Formulas (mathematics) Graphs Integers Mathematics Mathematics and Statistics Prisms Subdivisions Texts Unions |
title | Packing chromatic number, (1,1,2,2)-colorings, and characterizing the Petersen graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packing%20chromatic%20number,%20(1,1,2,2)-colorings,%20and%20characterizing%20the%20Petersen%20graph&rft.jtitle=Aequationes%20mathematicae&rft.au=Bre%C5%A1ar,%20Bo%C5%A1tjan&rft.date=2017-02-01&rft.volume=91&rft.issue=1&rft.spage=169&rft.epage=184&rft.pages=169-184&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-016-0461-8&rft_dat=%3Cproquest_sprin%3E2064685020%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064685020&rft_id=info:pmid/&rfr_iscdi=true |