Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry
In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2016-12, Vol.4 (12), p.1582-1587 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1587 |
---|---|
container_issue | 12 |
container_start_page | 1582 |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 4 |
creator | Strauß, Florian Hüger, Erwin Heitjans, Paul Geue, Thomas Stahn, Jochen Schmidt, Harald |
description | In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon.
Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established. |
doi_str_mv | 10.1002/ente.201600209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879993027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4281727961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVeISlSlV86WuHDZMLbXXvvYVklbEYWqDarExdp4ZxuX_Qi2F9j_HodUEeLCaWb03m80o5dl7yjMKAD7iH3EGQMq0wD6VXbKqC7ygmn5-tgr9SY7D-EZACgILoCfZnHp4taNHblD32EV3dCTuPXD-LQl663ryYueP7jW2SQuXNsF0gyeXFYxop_IxW6XpD9oILf9DwzRPVURa7KZyArH6BN2j02LNg4dRj-9zU6aqg14_lLPsi-L-frqJl9-vr69uljmtpBa56XUBeWyrksmONpCpDfSF3UplWBQlxvJmKQbq6EubKFooywH21hbM1pb5Pws-3DYu_PD9zHdZToXLLZt1eMwBkNVqbXmwMpkff-P9XkYfZ-uSy4BoEAX-4Wzg8v6IQSPjdl511V-MhTMPgezz8Ecc0iAPgA_XYvTf9xmvlrP_2bzA-tCxF9HtvLfjCx5Kczj6tqohRKfHr8Kc8l_A-0hm_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850080943</pqid></control><display><type>article</type><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><source>Wiley Online Library All Journals</source><creator>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</creator><creatorcontrib>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</creatorcontrib><description>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon.
Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201600209</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Amorphous materials ; Amorphous silicon ; diffusivity ; Electrode materials ; energy materials ; Lithium ; Lithium batteries ; Lithium-ion batteries ; neutron reflectometry ; Penetration ; Permeability ; Permeation ; Rechargeable batteries ; Reflectometry ; Silicon ; Silicon films ; Specific capacity ; Thin films</subject><ispartof>Energy technology (Weinheim, Germany), 2016-12, Vol.4 (12), p.1582-1587</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</citedby><cites>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</cites><orcidid>0000-0001-9389-8507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201600209$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201600209$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Strauß, Florian</creatorcontrib><creatorcontrib>Hüger, Erwin</creatorcontrib><creatorcontrib>Heitjans, Paul</creatorcontrib><creatorcontrib>Geue, Thomas</creatorcontrib><creatorcontrib>Stahn, Jochen</creatorcontrib><creatorcontrib>Schmidt, Harald</creatorcontrib><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><title>Energy technology (Weinheim, Germany)</title><addtitle>Energy Technol</addtitle><description>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon.
Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>diffusivity</subject><subject>Electrode materials</subject><subject>energy materials</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>neutron reflectometry</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Permeation</subject><subject>Rechargeable batteries</subject><subject>Reflectometry</subject><subject>Silicon</subject><subject>Silicon films</subject><subject>Specific capacity</subject><subject>Thin films</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1vEzEQxVeISlSlV86WuHDZMLbXXvvYVklbEYWqDarExdp4ZxuX_Qi2F9j_HodUEeLCaWb03m80o5dl7yjMKAD7iH3EGQMq0wD6VXbKqC7ygmn5-tgr9SY7D-EZACgILoCfZnHp4taNHblD32EV3dCTuPXD-LQl663ryYueP7jW2SQuXNsF0gyeXFYxop_IxW6XpD9oILf9DwzRPVURa7KZyArH6BN2j02LNg4dRj-9zU6aqg14_lLPsi-L-frqJl9-vr69uljmtpBa56XUBeWyrksmONpCpDfSF3UplWBQlxvJmKQbq6EubKFooywH21hbM1pb5Pws-3DYu_PD9zHdZToXLLZt1eMwBkNVqbXmwMpkff-P9XkYfZ-uSy4BoEAX-4Wzg8v6IQSPjdl511V-MhTMPgezz8Ecc0iAPgA_XYvTf9xmvlrP_2bzA-tCxF9HtvLfjCx5Kczj6tqohRKfHr8Kc8l_A-0hm_Y</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Strauß, Florian</creator><creator>Hüger, Erwin</creator><creator>Heitjans, Paul</creator><creator>Geue, Thomas</creator><creator>Stahn, Jochen</creator><creator>Schmidt, Harald</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9389-8507</orcidid></search><sort><creationdate>201612</creationdate><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><author>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>diffusivity</topic><topic>Electrode materials</topic><topic>energy materials</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>neutron reflectometry</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Permeation</topic><topic>Rechargeable batteries</topic><topic>Reflectometry</topic><topic>Silicon</topic><topic>Silicon films</topic><topic>Specific capacity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauß, Florian</creatorcontrib><creatorcontrib>Hüger, Erwin</creatorcontrib><creatorcontrib>Heitjans, Paul</creatorcontrib><creatorcontrib>Geue, Thomas</creatorcontrib><creatorcontrib>Stahn, Jochen</creatorcontrib><creatorcontrib>Schmidt, Harald</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauß, Florian</au><au>Hüger, Erwin</au><au>Heitjans, Paul</au><au>Geue, Thomas</au><au>Stahn, Jochen</au><au>Schmidt, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><addtitle>Energy Technol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>4</volume><issue>12</issue><spage>1582</spage><epage>1587</epage><pages>1582-1587</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon.
Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ente.201600209</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9389-8507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2016-12, Vol.4 (12), p.1582-1587 |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879993027 |
source | Wiley Online Library All Journals |
subjects | Amorphous materials Amorphous silicon diffusivity Electrode materials energy materials Lithium Lithium batteries Lithium-ion batteries neutron reflectometry Penetration Permeability Permeation Rechargeable batteries Reflectometry Silicon Silicon films Specific capacity Thin films |
title | Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Permeation%20through%20Thin%20Lithium-Silicon%20Films%20for%20Battery%20Applications%20Investigated%20by%20Neutron%20Reflectometry&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Strau%C3%9F,%20Florian&rft.date=2016-12&rft.volume=4&rft.issue=12&rft.spage=1582&rft.epage=1587&rft.pages=1582-1587&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201600209&rft_dat=%3Cproquest_cross%3E4281727961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850080943&rft_id=info:pmid/&rfr_iscdi=true |