Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry

In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2016-12, Vol.4 (12), p.1582-1587
Hauptverfasser: Strauß, Florian, Hüger, Erwin, Heitjans, Paul, Geue, Thomas, Stahn, Jochen, Schmidt, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1587
container_issue 12
container_start_page 1582
container_title Energy technology (Weinheim, Germany)
container_volume 4
creator Strauß, Florian
Hüger, Erwin
Heitjans, Paul
Geue, Thomas
Stahn, Jochen
Schmidt, Harald
description In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon. Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.
doi_str_mv 10.1002/ente.201600209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879993027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4281727961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVeISlSlV86WuHDZMLbXXvvYVklbEYWqDarExdp4ZxuX_Qi2F9j_HodUEeLCaWb03m80o5dl7yjMKAD7iH3EGQMq0wD6VXbKqC7ygmn5-tgr9SY7D-EZACgILoCfZnHp4taNHblD32EV3dCTuPXD-LQl663ryYueP7jW2SQuXNsF0gyeXFYxop_IxW6XpD9oILf9DwzRPVURa7KZyArH6BN2j02LNg4dRj-9zU6aqg14_lLPsi-L-frqJl9-vr69uljmtpBa56XUBeWyrksmONpCpDfSF3UplWBQlxvJmKQbq6EubKFooywH21hbM1pb5Pws-3DYu_PD9zHdZToXLLZt1eMwBkNVqbXmwMpkff-P9XkYfZ-uSy4BoEAX-4Wzg8v6IQSPjdl511V-MhTMPgezz8Ecc0iAPgA_XYvTf9xmvlrP_2bzA-tCxF9HtvLfjCx5Kczj6tqohRKfHr8Kc8l_A-0hm_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850080943</pqid></control><display><type>article</type><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><source>Wiley Online Library All Journals</source><creator>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</creator><creatorcontrib>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</creatorcontrib><description>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon. Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201600209</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Amorphous materials ; Amorphous silicon ; diffusivity ; Electrode materials ; energy materials ; Lithium ; Lithium batteries ; Lithium-ion batteries ; neutron reflectometry ; Penetration ; Permeability ; Permeation ; Rechargeable batteries ; Reflectometry ; Silicon ; Silicon films ; Specific capacity ; Thin films</subject><ispartof>Energy technology (Weinheim, Germany), 2016-12, Vol.4 (12), p.1582-1587</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</citedby><cites>FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</cites><orcidid>0000-0001-9389-8507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201600209$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201600209$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Strauß, Florian</creatorcontrib><creatorcontrib>Hüger, Erwin</creatorcontrib><creatorcontrib>Heitjans, Paul</creatorcontrib><creatorcontrib>Geue, Thomas</creatorcontrib><creatorcontrib>Stahn, Jochen</creatorcontrib><creatorcontrib>Schmidt, Harald</creatorcontrib><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><title>Energy technology (Weinheim, Germany)</title><addtitle>Energy Technol</addtitle><description>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon. Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>diffusivity</subject><subject>Electrode materials</subject><subject>energy materials</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>neutron reflectometry</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Permeation</subject><subject>Rechargeable batteries</subject><subject>Reflectometry</subject><subject>Silicon</subject><subject>Silicon films</subject><subject>Specific capacity</subject><subject>Thin films</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1vEzEQxVeISlSlV86WuHDZMLbXXvvYVklbEYWqDarExdp4ZxuX_Qi2F9j_HodUEeLCaWb03m80o5dl7yjMKAD7iH3EGQMq0wD6VXbKqC7ygmn5-tgr9SY7D-EZACgILoCfZnHp4taNHblD32EV3dCTuPXD-LQl663ryYueP7jW2SQuXNsF0gyeXFYxop_IxW6XpD9oILf9DwzRPVURa7KZyArH6BN2j02LNg4dRj-9zU6aqg14_lLPsi-L-frqJl9-vr69uljmtpBa56XUBeWyrksmONpCpDfSF3UplWBQlxvJmKQbq6EubKFooywH21hbM1pb5Pws-3DYu_PD9zHdZToXLLZt1eMwBkNVqbXmwMpkff-P9XkYfZ-uSy4BoEAX-4Wzg8v6IQSPjdl511V-MhTMPgezz8Ecc0iAPgA_XYvTf9xmvlrP_2bzA-tCxF9HtvLfjCx5Kczj6tqohRKfHr8Kc8l_A-0hm_Y</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Strauß, Florian</creator><creator>Hüger, Erwin</creator><creator>Heitjans, Paul</creator><creator>Geue, Thomas</creator><creator>Stahn, Jochen</creator><creator>Schmidt, Harald</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9389-8507</orcidid></search><sort><creationdate>201612</creationdate><title>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</title><author>Strauß, Florian ; Hüger, Erwin ; Heitjans, Paul ; Geue, Thomas ; Stahn, Jochen ; Schmidt, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4699-7694136dd7253ec45194428d768520d7b62261bc90d4c481f8c30cfccd21dce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>diffusivity</topic><topic>Electrode materials</topic><topic>energy materials</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>neutron reflectometry</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Permeation</topic><topic>Rechargeable batteries</topic><topic>Reflectometry</topic><topic>Silicon</topic><topic>Silicon films</topic><topic>Specific capacity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauß, Florian</creatorcontrib><creatorcontrib>Hüger, Erwin</creatorcontrib><creatorcontrib>Heitjans, Paul</creatorcontrib><creatorcontrib>Geue, Thomas</creatorcontrib><creatorcontrib>Stahn, Jochen</creatorcontrib><creatorcontrib>Schmidt, Harald</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauß, Florian</au><au>Hüger, Erwin</au><au>Heitjans, Paul</au><au>Geue, Thomas</au><au>Stahn, Jochen</au><au>Schmidt, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><addtitle>Energy Technol</addtitle><date>2016-12</date><risdate>2016</risdate><volume>4</volume><issue>12</issue><spage>1582</spage><epage>1587</epage><pages>1582-1587</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>In the ongoing search for new negative electrode materials for lithium‐ion batteries, amorphous silicon with a theoretical specific capacity of almost 4000 mA h g−1 is still one of the most promising candidates. In order to optimize cycling behavior, prelithiation of silicon is discussed as possible solution. Yet, little is known about kinetics in the Li‐Si system, especially with a low lithium content. Using neutron reflectometry as a tool, lithium permeation through amorphous LixSi layers was probed during annealing. From the results a lithium permeability (diffusivity×solubility) of P=(3.3±0.9)×10−21 m2 s−1 is derived for LixSi (x≈0.1), which is identical to that of pure amorphous silicon. Lithium Permeation: The ionic transport of lithium ions in amorphous LixSi is important when silicon is used as anode material in lithium‐ion batteries. By using a neutron‐reflectometry based technique, lithium permeation through thin LixSi layers (x=0.1) is determined by isotope exchange. The permeability does not deviate substantially from the value of pure amorphous silicon, because no lithium–silicon transport path is established.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ente.201600209</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9389-8507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2016-12, Vol.4 (12), p.1582-1587
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_miscellaneous_1879993027
source Wiley Online Library All Journals
subjects Amorphous materials
Amorphous silicon
diffusivity
Electrode materials
energy materials
Lithium
Lithium batteries
Lithium-ion batteries
neutron reflectometry
Penetration
Permeability
Permeation
Rechargeable batteries
Reflectometry
Silicon
Silicon films
Specific capacity
Thin films
title Lithium Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Permeation%20through%20Thin%20Lithium-Silicon%20Films%20for%20Battery%20Applications%20Investigated%20by%20Neutron%20Reflectometry&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Strau%C3%9F,%20Florian&rft.date=2016-12&rft.volume=4&rft.issue=12&rft.spage=1582&rft.epage=1587&rft.pages=1582-1587&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201600209&rft_dat=%3Cproquest_cross%3E4281727961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850080943&rft_id=info:pmid/&rfr_iscdi=true