On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces
The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a Z 2 lattice of projective minimal surfaces. Known and novel geometric properties of t...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2017, Vol.57 (1), p.215-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 1 |
container_start_page | 215 |
container_title | Discrete & computational geometry |
container_volume | 57 |
creator | McCarthy, Alan Schief, Wolfgang K. |
description | The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a
Z
2
lattice of projective minimal surfaces. Known and novel geometric properties of these Demoulin lattices are discussed and used to motivate the notion of lattice Lie quadrics and associated discrete envelopes and the definition of the class of discrete projective minimal and Q-surfaces (PMQ-surfaces). We demonstrate that the even and odd Demoulin sublattices encode a two-parameter family of pairs of discrete PMQ-surfaces with the property that one discrete PMQ-surface constitute an envelope of the lattice Lie quadrics associated with the other. |
doi_str_mv | 10.1007/s00454-016-9827-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879992237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4284513171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7e7d22a98fb4edc64aef38f3d9a2304cbba70d81e859bcbfbb123bd1a4a005ad3</originalsourceid><addsrcrecordid>eNp1kE1LHTEUhkOp0Fv1B3QX6MYuRk8-5mayLNdPUBS03YYkc9LOZSaxyYzYf2_kdlEEV2fzvC_veQj5wuCYAaiTAiBb2QBbN7rjqnn-QFZMCt6AlPIjWQFTummFWn8in0vZQsU1dCvy8zbS-TfSTZrcEO2c8uALTYGe4pSWcYj0IdtYQspToTb29Oh0KD7jjN_oXU5b9PPwhPRmiMNkR3q_5GA9lgOyF-xY8PDf3Sc_zs8eNpfN9e3F1eb7deOF5nOjUPWcW90FJ7H3a2kxiC6IXlsuQHrnrIK-Y9i12nkXnGNcuJ5ZaQFa24t9crTrfczpz4JlNlOdh-NoI6alGNYprTXnQlX06xt0m5Yc67pKtQxkB2tdKbajfE6lZAzmMdfP8l_DwLyaNjvTppo2r6bNc83wXaZUNv7C_F_zu6EXBLeCDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851048069</pqid></control><display><type>article</type><title>On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces</title><source>SpringerLink Journals</source><creator>McCarthy, Alan ; Schief, Wolfgang K.</creator><creatorcontrib>McCarthy, Alan ; Schief, Wolfgang K.</creatorcontrib><description>The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a
Z
2
lattice of projective minimal surfaces. Known and novel geometric properties of these Demoulin lattices are discussed and used to motivate the notion of lattice Lie quadrics and associated discrete envelopes and the definition of the class of discrete projective minimal and Q-surfaces (PMQ-surfaces). We demonstrate that the even and odd Demoulin sublattices encode a two-parameter family of pairs of discrete PMQ-surfaces with the property that one discrete PMQ-surface constitute an envelope of the lattice Lie quadrics associated with the other.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-016-9827-x</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorial analysis ; Combinatorics ; Computational Mathematics and Numerical Analysis ; Envelopes ; Geometry ; Lattice theory ; Lattices ; Mathematics ; Mathematics and Statistics ; Minimal surfaces ; Seeds ; Texts ; Transformations ; Transforms</subject><ispartof>Discrete & computational geometry, 2017, Vol.57 (1), p.215-230</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Discrete & Computational Geometry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7e7d22a98fb4edc64aef38f3d9a2304cbba70d81e859bcbfbb123bd1a4a005ad3</citedby><cites>FETCH-LOGICAL-c392t-7e7d22a98fb4edc64aef38f3d9a2304cbba70d81e859bcbfbb123bd1a4a005ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-016-9827-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-016-9827-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>McCarthy, Alan</creatorcontrib><creatorcontrib>Schief, Wolfgang K.</creatorcontrib><title>On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a
Z
2
lattice of projective minimal surfaces. Known and novel geometric properties of these Demoulin lattices are discussed and used to motivate the notion of lattice Lie quadrics and associated discrete envelopes and the definition of the class of discrete projective minimal and Q-surfaces (PMQ-surfaces). We demonstrate that the even and odd Demoulin sublattices encode a two-parameter family of pairs of discrete PMQ-surfaces with the property that one discrete PMQ-surface constitute an envelope of the lattice Lie quadrics associated with the other.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Envelopes</subject><subject>Geometry</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimal surfaces</subject><subject>Seeds</subject><subject>Texts</subject><subject>Transformations</subject><subject>Transforms</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LHTEUhkOp0Fv1B3QX6MYuRk8-5mayLNdPUBS03YYkc9LOZSaxyYzYf2_kdlEEV2fzvC_veQj5wuCYAaiTAiBb2QBbN7rjqnn-QFZMCt6AlPIjWQFTummFWn8in0vZQsU1dCvy8zbS-TfSTZrcEO2c8uALTYGe4pSWcYj0IdtYQspToTb29Oh0KD7jjN_oXU5b9PPwhPRmiMNkR3q_5GA9lgOyF-xY8PDf3Sc_zs8eNpfN9e3F1eb7deOF5nOjUPWcW90FJ7H3a2kxiC6IXlsuQHrnrIK-Y9i12nkXnGNcuJ5ZaQFa24t9crTrfczpz4JlNlOdh-NoI6alGNYprTXnQlX06xt0m5Yc67pKtQxkB2tdKbajfE6lZAzmMdfP8l_DwLyaNjvTppo2r6bNc83wXaZUNv7C_F_zu6EXBLeCDw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>McCarthy, Alan</creator><creator>Schief, Wolfgang K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces</title><author>McCarthy, Alan ; Schief, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7e7d22a98fb4edc64aef38f3d9a2304cbba70d81e859bcbfbb123bd1a4a005ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Envelopes</topic><topic>Geometry</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimal surfaces</topic><topic>Seeds</topic><topic>Texts</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Alan</creatorcontrib><creatorcontrib>Schief, Wolfgang K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Alan</au><au>Schief, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2017</date><risdate>2017</risdate><volume>57</volume><issue>1</issue><spage>215</spage><epage>230</epage><pages>215-230</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>The classical Demoulin transformation is examined in the context of discrete differential geometry. We show that iterative application of the Demoulin transformation to a seed projective minimal surface generates a
Z
2
lattice of projective minimal surfaces. Known and novel geometric properties of these Demoulin lattices are discussed and used to motivate the notion of lattice Lie quadrics and associated discrete envelopes and the definition of the class of discrete projective minimal and Q-surfaces (PMQ-surfaces). We demonstrate that the even and odd Demoulin sublattices encode a two-parameter family of pairs of discrete PMQ-surfaces with the property that one discrete PMQ-surface constitute an envelope of the lattice Lie quadrics associated with the other.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-016-9827-x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2017, Vol.57 (1), p.215-230 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879992237 |
source | SpringerLink Journals |
subjects | Combinatorial analysis Combinatorics Computational Mathematics and Numerical Analysis Envelopes Geometry Lattice theory Lattices Mathematics Mathematics and Statistics Minimal surfaces Seeds Texts Transformations Transforms |
title | On the Combinatorics of Demoulin Transforms and (Discrete) Projective Minimal Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Combinatorics%20of%20Demoulin%20Transforms%20and%20(Discrete)%20Projective%20Minimal%20Surfaces&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=McCarthy,%20Alan&rft.date=2017&rft.volume=57&rft.issue=1&rft.spage=215&rft.epage=230&rft.pages=215-230&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-016-9827-x&rft_dat=%3Cproquest_cross%3E4284513171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851048069&rft_id=info:pmid/&rfr_iscdi=true |