RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors
A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2016 |
creator | Jiang, Lin Zhang, Yan Zeng, Lin Zheng, Leilei Li, Jianxia Song, Jinlin |
description | A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro. |
doi_str_mv | 10.1155/2016/2828512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879991620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879991620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</originalsourceid><addsrcrecordid>eNqF0M9L5TAQB_AiLvhj9-ZZAl4ErSZp006O-lafgqsiei7zmqkv8prUpE93_3sjTxS87CFMGD4MM98s2xH8SAiljiUX1bEECUrItWxTVFDnpZB6_fMv-Ea2FeMT56XSSm5mi7vpb3ZLw2gN5dOA3UiGpTrMyRG7-ZvaDCNDdk2v7NT63vY02pZdo_PWjRQ6bIl1PrDLfiCDrqX8j3d29MG6RzahxYKd0hxfrA_xZ_ajw0WkXx91O3s4P7ufXORXN9PLyclVjooXYw66BA1QFjPFoQJUugADSFyCQDKzCmgmWlnqGrUmYWoDvEynV10HZW1UsZ3tr-YOwT8vKY5Nb2ObVkFHfhkbAbXWWlSSJ7r3jT75ZXBpu6QqKQpIL6nDlWqDjzFQ1wzB9hj-NYI379E379E3H9EnfrDic-sMvtr_6d2VpmSowy8tuOZ1XbwB4_-LJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862138213</pqid></control><display><type>article</type><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin</creator><contributor>Naik, Rajesh R.</contributor><creatorcontrib>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin ; Naik, Rajesh R.</creatorcontrib><description>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2016/2828512</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Biocompatibility ; Biomimetics ; Cell adhesion & migration ; Cell growth ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Fourier transforms ; Graphene ; Laboratories ; Nanomaterials ; Nanostructure ; Oxides ; Peptides ; Spectrum analysis ; Studies ; Tissue engineering</subject><ispartof>Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-12</ispartof><rights>Copyright © 2016 Jianxia Li et al.</rights><rights>Copyright © 2016 Jianxia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</citedby><cites>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</cites><orcidid>0000-0002-0224-6640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Naik, Rajesh R.</contributor><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Leilei</creatorcontrib><creatorcontrib>Li, Jianxia</creatorcontrib><creatorcontrib>Song, Jinlin</creatorcontrib><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><title>Journal of nanomaterials</title><description>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</description><subject>Biocompatibility</subject><subject>Biomimetics</subject><subject>Cell adhesion & migration</subject><subject>Cell growth</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Laboratories</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Peptides</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9L5TAQB_AiLvhj9-ZZAl4ErSZp006O-lafgqsiei7zmqkv8prUpE93_3sjTxS87CFMGD4MM98s2xH8SAiljiUX1bEECUrItWxTVFDnpZB6_fMv-Ea2FeMT56XSSm5mi7vpb3ZLw2gN5dOA3UiGpTrMyRG7-ZvaDCNDdk2v7NT63vY02pZdo_PWjRQ6bIl1PrDLfiCDrqX8j3d29MG6RzahxYKd0hxfrA_xZ_ajw0WkXx91O3s4P7ufXORXN9PLyclVjooXYw66BA1QFjPFoQJUugADSFyCQDKzCmgmWlnqGrUmYWoDvEynV10HZW1UsZ3tr-YOwT8vKY5Nb2ObVkFHfhkbAbXWWlSSJ7r3jT75ZXBpu6QqKQpIL6nDlWqDjzFQ1wzB9hj-NYI379E379E3H9EnfrDic-sMvtr_6d2VpmSowy8tuOZ1XbwB4_-LJA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jiang, Lin</creator><creator>Zhang, Yan</creator><creator>Zeng, Lin</creator><creator>Zheng, Leilei</creator><creator>Li, Jianxia</creator><creator>Song, Jinlin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-0224-6640</orcidid></search><sort><creationdate>20160101</creationdate><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><author>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocompatibility</topic><topic>Biomimetics</topic><topic>Cell adhesion & migration</topic><topic>Cell growth</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Laboratories</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Peptides</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Leilei</creatorcontrib><creatorcontrib>Li, Jianxia</creatorcontrib><creatorcontrib>Song, Jinlin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lin</au><au>Zhang, Yan</au><au>Zeng, Lin</au><au>Zheng, Leilei</au><au>Li, Jianxia</au><au>Song, Jinlin</au><au>Naik, Rajesh R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</atitle><jtitle>Journal of nanomaterials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2828512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0224-6640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-12 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879991620 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biocompatibility Biomimetics Cell adhesion & migration Cell growth Electrochemical analysis Electrochemical impedance spectroscopy Electrodes Fourier transforms Graphene Laboratories Nanomaterials Nanostructure Oxides Peptides Spectrum analysis Studies Tissue engineering |
title | RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGD%20Peptide-Grafted%20Graphene%20Oxide%20as%20a%20New%20Biomimetic%20Nanointerface%20for%20Impedance-Monitoring%20Cell%20Behaviors&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Jiang,%20Lin&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2016/2828512&rft_dat=%3Cproquest_cross%3E1879991620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862138213&rft_id=info:pmid/&rfr_iscdi=true |