RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors

A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-12
Hauptverfasser: Jiang, Lin, Zhang, Yan, Zeng, Lin, Zheng, Leilei, Li, Jianxia, Song, Jinlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2016
container_start_page 1
container_title Journal of nanomaterials
container_volume 2016
creator Jiang, Lin
Zhang, Yan
Zeng, Lin
Zheng, Leilei
Li, Jianxia
Song, Jinlin
description A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.
doi_str_mv 10.1155/2016/2828512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879991620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879991620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</originalsourceid><addsrcrecordid>eNqF0M9L5TAQB_AiLvhj9-ZZAl4ErSZp006O-lafgqsiei7zmqkv8prUpE93_3sjTxS87CFMGD4MM98s2xH8SAiljiUX1bEECUrItWxTVFDnpZB6_fMv-Ea2FeMT56XSSm5mi7vpb3ZLw2gN5dOA3UiGpTrMyRG7-ZvaDCNDdk2v7NT63vY02pZdo_PWjRQ6bIl1PrDLfiCDrqX8j3d29MG6RzahxYKd0hxfrA_xZ_ajw0WkXx91O3s4P7ufXORXN9PLyclVjooXYw66BA1QFjPFoQJUugADSFyCQDKzCmgmWlnqGrUmYWoDvEynV10HZW1UsZ3tr-YOwT8vKY5Nb2ObVkFHfhkbAbXWWlSSJ7r3jT75ZXBpu6QqKQpIL6nDlWqDjzFQ1wzB9hj-NYI379E379E3H9EnfrDic-sMvtr_6d2VpmSowy8tuOZ1XbwB4_-LJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862138213</pqid></control><display><type>article</type><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin</creator><contributor>Naik, Rajesh R.</contributor><creatorcontrib>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin ; Naik, Rajesh R.</creatorcontrib><description>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2016/2828512</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Biocompatibility ; Biomimetics ; Cell adhesion &amp; migration ; Cell growth ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Fourier transforms ; Graphene ; Laboratories ; Nanomaterials ; Nanostructure ; Oxides ; Peptides ; Spectrum analysis ; Studies ; Tissue engineering</subject><ispartof>Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-12</ispartof><rights>Copyright © 2016 Jianxia Li et al.</rights><rights>Copyright © 2016 Jianxia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</citedby><cites>FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</cites><orcidid>0000-0002-0224-6640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Naik, Rajesh R.</contributor><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Leilei</creatorcontrib><creatorcontrib>Li, Jianxia</creatorcontrib><creatorcontrib>Song, Jinlin</creatorcontrib><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><title>Journal of nanomaterials</title><description>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</description><subject>Biocompatibility</subject><subject>Biomimetics</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell growth</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Laboratories</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Peptides</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Tissue engineering</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9L5TAQB_AiLvhj9-ZZAl4ErSZp006O-lafgqsiei7zmqkv8prUpE93_3sjTxS87CFMGD4MM98s2xH8SAiljiUX1bEECUrItWxTVFDnpZB6_fMv-Ea2FeMT56XSSm5mi7vpb3ZLw2gN5dOA3UiGpTrMyRG7-ZvaDCNDdk2v7NT63vY02pZdo_PWjRQ6bIl1PrDLfiCDrqX8j3d29MG6RzahxYKd0hxfrA_xZ_ajw0WkXx91O3s4P7ufXORXN9PLyclVjooXYw66BA1QFjPFoQJUugADSFyCQDKzCmgmWlnqGrUmYWoDvEynV10HZW1UsZ3tr-YOwT8vKY5Nb2ObVkFHfhkbAbXWWlSSJ7r3jT75ZXBpu6QqKQpIL6nDlWqDjzFQ1wzB9hj-NYI379E379E3H9EnfrDic-sMvtr_6d2VpmSowy8tuOZ1XbwB4_-LJA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jiang, Lin</creator><creator>Zhang, Yan</creator><creator>Zeng, Lin</creator><creator>Zheng, Leilei</creator><creator>Li, Jianxia</creator><creator>Song, Jinlin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-0224-6640</orcidid></search><sort><creationdate>20160101</creationdate><title>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</title><author>Jiang, Lin ; Zhang, Yan ; Zeng, Lin ; Zheng, Leilei ; Li, Jianxia ; Song, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-894898843b50868a5938d8ae0281aedb68eb1c2497a99e1d7d8040166ff847d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocompatibility</topic><topic>Biomimetics</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell growth</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Laboratories</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Peptides</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Leilei</creatorcontrib><creatorcontrib>Li, Jianxia</creatorcontrib><creatorcontrib>Song, Jinlin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lin</au><au>Zhang, Yan</au><au>Zeng, Lin</au><au>Zheng, Leilei</au><au>Li, Jianxia</au><au>Song, Jinlin</au><au>Naik, Rajesh R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors</atitle><jtitle>Journal of nanomaterials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2828512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0224-6640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-12
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1879991620
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biocompatibility
Biomimetics
Cell adhesion & migration
Cell growth
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrodes
Fourier transforms
Graphene
Laboratories
Nanomaterials
Nanostructure
Oxides
Peptides
Spectrum analysis
Studies
Tissue engineering
title RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGD%20Peptide-Grafted%20Graphene%20Oxide%20as%20a%20New%20Biomimetic%20Nanointerface%20for%20Impedance-Monitoring%20Cell%20Behaviors&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Jiang,%20Lin&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2016/2828512&rft_dat=%3Cproquest_cross%3E1879991620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862138213&rft_id=info:pmid/&rfr_iscdi=true