Material Testing Based on Cylindrical Cavity

This design of alcohol detection system uses DSP technology, ADF4350 frequency synthesizer chip developed microwave source controlled by DSP controller, the source excites the microwave resonator cavity, the output signal of the resonator is detected by the detector, then sampled and processed by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2016-12, Vol.723, p.166-170
Hauptverfasser: Dong, Ang Ran, Guo, Gao Feng, Gao, Chong, Li, En
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 166
container_title Key Engineering Materials
container_volume 723
creator Dong, Ang Ran
Guo, Gao Feng
Gao, Chong
Li, En
description This design of alcohol detection system uses DSP technology, ADF4350 frequency synthesizer chip developed microwave source controlled by DSP controller, the source excites the microwave resonator cavity, the output signal of the resonator is detected by the detector, then sampled and processed by the DSP processor, and the concentration of alcohol is calculated by perturbation theory and dielectric properties of alcohol. The human-computer interaction of this system is realized by touch screen, so that the display looks easy to operate and very user-friendly. This paper analyzes the feasibility of microwave resonant cavity perturbation method in alcohol materials, and derives the relationship between the concentration of alcohol mixed solution, the dielectric constant and the output frequency of the resonant cavity, and the theoretical basis of this paper is derived. The dielectric properties of different alcohol concentration at different frequencies were studied, and the standard curves of different concentration alcohol dielectric spectra were established by the theoretical model and a large number of experimental data.
doi_str_mv 10.4028/www.scientific.net/KEM.723.166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879991362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407556927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2436-1ba01fd120c86545f2ac4e89f6ba427259b5e75da731bd4b18c6afd29f55d45c3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMXsK2-Q0EQF84098tG1KFesMVNXYdMJqMp05maTC19eyMVBFduzln8H_85fABcIJhTiOVku93m0XrX9r72Nm9dP3meznOBSY44PwCDNHGmhGKHYEggkYQJztVRCiAimZKYn4BhjEsICZKIDcDV3PQueNOMFy72vn0b35noqnHXjotd49sqeJvCwnz6fncKjmvTRHf2s0fg9X66KB6z2cvDU3E7yyymhGeoNBDVFcLQSs4oq7Gx1ElV89JQLDBTJXOCVUYQVFa0RNJyU1dY1YxVlFkyApf73nXoPjbpL73y0bqmMa3rNlEjKZRSiHCc0PM_6LLbhDZ9pzGFgjGusEjU9Z6yoYsxuFqvg1-ZsNMI6m-zOpnVv2Z1MquTWZ3M6uQ0FdzsC_pg2tg7-_57558VX-pjhoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407556927</pqid></control><display><type>article</type><title>Material Testing Based on Cylindrical Cavity</title><source>Scientific.net Journals</source><creator>Dong, Ang Ran ; Guo, Gao Feng ; Gao, Chong ; Li, En</creator><creatorcontrib>Dong, Ang Ran ; Guo, Gao Feng ; Gao, Chong ; Li, En</creatorcontrib><description>This design of alcohol detection system uses DSP technology, ADF4350 frequency synthesizer chip developed microwave source controlled by DSP controller, the source excites the microwave resonator cavity, the output signal of the resonator is detected by the detector, then sampled and processed by the DSP processor, and the concentration of alcohol is calculated by perturbation theory and dielectric properties of alcohol. The human-computer interaction of this system is realized by touch screen, so that the display looks easy to operate and very user-friendly. This paper analyzes the feasibility of microwave resonant cavity perturbation method in alcohol materials, and derives the relationship between the concentration of alcohol mixed solution, the dielectric constant and the output frequency of the resonant cavity, and the theoretical basis of this paper is derived. The dielectric properties of different alcohol concentration at different frequencies were studied, and the standard curves of different concentration alcohol dielectric spectra were established by the theoretical model and a large number of experimental data.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 3038357669</identifier><identifier>ISBN: 9783038357667</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.723.166</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Alcohol ; Alcohols ; Cavity resonators ; Detectors ; Dielectric properties ; Digital signal processing ; Frequency synthesizers ; Holes ; Mathematical models ; Microprocessors ; Microwaves ; Perturbation methods ; Perturbation theory ; Resonators ; Touch screens</subject><ispartof>Key Engineering Materials, 2016-12, Vol.723, p.166-170</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4332?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Ang Ran</creatorcontrib><creatorcontrib>Guo, Gao Feng</creatorcontrib><creatorcontrib>Gao, Chong</creatorcontrib><creatorcontrib>Li, En</creatorcontrib><title>Material Testing Based on Cylindrical Cavity</title><title>Key Engineering Materials</title><description>This design of alcohol detection system uses DSP technology, ADF4350 frequency synthesizer chip developed microwave source controlled by DSP controller, the source excites the microwave resonator cavity, the output signal of the resonator is detected by the detector, then sampled and processed by the DSP processor, and the concentration of alcohol is calculated by perturbation theory and dielectric properties of alcohol. The human-computer interaction of this system is realized by touch screen, so that the display looks easy to operate and very user-friendly. This paper analyzes the feasibility of microwave resonant cavity perturbation method in alcohol materials, and derives the relationship between the concentration of alcohol mixed solution, the dielectric constant and the output frequency of the resonant cavity, and the theoretical basis of this paper is derived. The dielectric properties of different alcohol concentration at different frequencies were studied, and the standard curves of different concentration alcohol dielectric spectra were established by the theoretical model and a large number of experimental data.</description><subject>Alcohol</subject><subject>Alcohols</subject><subject>Cavity resonators</subject><subject>Detectors</subject><subject>Dielectric properties</subject><subject>Digital signal processing</subject><subject>Frequency synthesizers</subject><subject>Holes</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Microwaves</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Resonators</subject><subject>Touch screens</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>3038357669</isbn><isbn>9783038357667</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkMtKAzEUhoMXsK2-Q0EQF84098tG1KFesMVNXYdMJqMp05maTC19eyMVBFduzln8H_85fABcIJhTiOVku93m0XrX9r72Nm9dP3meznOBSY44PwCDNHGmhGKHYEggkYQJztVRCiAimZKYn4BhjEsICZKIDcDV3PQueNOMFy72vn0b35noqnHXjotd49sqeJvCwnz6fncKjmvTRHf2s0fg9X66KB6z2cvDU3E7yyymhGeoNBDVFcLQSs4oq7Gx1ElV89JQLDBTJXOCVUYQVFa0RNJyU1dY1YxVlFkyApf73nXoPjbpL73y0bqmMa3rNlEjKZRSiHCc0PM_6LLbhDZ9pzGFgjGusEjU9Z6yoYsxuFqvg1-ZsNMI6m-zOpnVv2Z1MquTWZ3M6uQ0FdzsC_pg2tg7-_57558VX-pjhoA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Dong, Ang Ran</creator><creator>Guo, Gao Feng</creator><creator>Gao, Chong</creator><creator>Li, En</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161201</creationdate><title>Material Testing Based on Cylindrical Cavity</title><author>Dong, Ang Ran ; Guo, Gao Feng ; Gao, Chong ; Li, En</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2436-1ba01fd120c86545f2ac4e89f6ba427259b5e75da731bd4b18c6afd29f55d45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alcohol</topic><topic>Alcohols</topic><topic>Cavity resonators</topic><topic>Detectors</topic><topic>Dielectric properties</topic><topic>Digital signal processing</topic><topic>Frequency synthesizers</topic><topic>Holes</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Microwaves</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Resonators</topic><topic>Touch screens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Ang Ran</creatorcontrib><creatorcontrib>Guo, Gao Feng</creatorcontrib><creatorcontrib>Gao, Chong</creatorcontrib><creatorcontrib>Li, En</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Ang Ran</au><au>Guo, Gao Feng</au><au>Gao, Chong</au><au>Li, En</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material Testing Based on Cylindrical Cavity</atitle><jtitle>Key Engineering Materials</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>723</volume><spage>166</spage><epage>170</epage><pages>166-170</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>3038357669</isbn><isbn>9783038357667</isbn><abstract>This design of alcohol detection system uses DSP technology, ADF4350 frequency synthesizer chip developed microwave source controlled by DSP controller, the source excites the microwave resonator cavity, the output signal of the resonator is detected by the detector, then sampled and processed by the DSP processor, and the concentration of alcohol is calculated by perturbation theory and dielectric properties of alcohol. The human-computer interaction of this system is realized by touch screen, so that the display looks easy to operate and very user-friendly. This paper analyzes the feasibility of microwave resonant cavity perturbation method in alcohol materials, and derives the relationship between the concentration of alcohol mixed solution, the dielectric constant and the output frequency of the resonant cavity, and the theoretical basis of this paper is derived. The dielectric properties of different alcohol concentration at different frequencies were studied, and the standard curves of different concentration alcohol dielectric spectra were established by the theoretical model and a large number of experimental data.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.723.166</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key Engineering Materials, 2016-12, Vol.723, p.166-170
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1879991362
source Scientific.net Journals
subjects Alcohol
Alcohols
Cavity resonators
Detectors
Dielectric properties
Digital signal processing
Frequency synthesizers
Holes
Mathematical models
Microprocessors
Microwaves
Perturbation methods
Perturbation theory
Resonators
Touch screens
title Material Testing Based on Cylindrical Cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20Testing%20Based%20on%20Cylindrical%20Cavity&rft.jtitle=Key%20Engineering%20Materials&rft.au=Dong,%20Ang%20Ran&rft.date=2016-12-01&rft.volume=723&rft.spage=166&rft.epage=170&rft.pages=166-170&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=3038357669&rft.isbn_list=9783038357667&rft_id=info:doi/10.4028/www.scientific.net/KEM.723.166&rft_dat=%3Cproquest_cross%3E2407556927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407556927&rft_id=info:pmid/&rfr_iscdi=true