Improving probabilistic inference in graphical models with determinism and cycles

Many important real-world applications of machine learning, statistical physics, constraint programming and information theory can be formulated using graphical models that involve determinism and cycles. Accurate and efficient inference and training of such graphical models remains a key challenge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2017, Vol.106 (1), p.1-54
Hauptverfasser: Ibrahim, Mohamed-Hamza, Pal, Christopher, Pesant, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!