Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity

Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-01, Vol.89 (2), p.1117-1122
Hauptverfasser: Jochum, Tobias, Fastnacht, Agnes, Trumbore, Susan E, Popp, Jürgen, Frosch, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 2
container_start_page 1117
container_title Analytical chemistry (Washington)
container_volume 89
creator Jochum, Tobias
Fastnacht, Agnes
Trumbore, Susan E
Popp, Jürgen
Frosch, Torsten
description Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.
doi_str_mv 10.1021/acs.analchem.6b03101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879989265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4305036411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</originalsourceid><addsrcrecordid>eNqNkdFqFDEUhoModlt9A5GAN72Z7UkmyWS8W9dWC7WC1eshk8lsU2aSMckU91V8WrPutoIXIhzIIfn-_4TzI_SKwJIAJWdKx6VyatC3ZlyKFkoC5AlaEE6hEFLSp2gBAGVBK4AjdBzjHQDJjHiOjqgEVhIiF-jnexuMTviLGpXDN1Pug4_aT1bjT0bFOZjRuBSx7_E76we_sVoN-NpmbGMcvrA_VLLe4dl1JuBrleaQ39fedXZ3H9_ilculhm36rVxNU_BK3-LeB3yT5m5r3ebRT0WDVzrZe5u2L9CzXg3RvDycJ-jbxfnX9cfi6vOHy_XqqlCspqkQLRWl7DQQVTPCe9nxtmNdXTHSE8Flq1hJhYJSV1IyKfpeMs4IBSkrSmVdnqDTvW_-2PfZxNSMNmozDMoZP8eGyKquZU0F_w-UcxCcM5bRN3-hd34OeQ87SgDUpBRVptie0nnrMZi-mYIdVdg2BJpdzE2OuXmIuTnEnGWvD-ZzO5ruUfSQawZgD-zkfwb_y_MXQSC3cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860091367</pqid></control><display><type>article</type><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><source>ACS Publications</source><source>MEDLINE</source><creator>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</creator><creatorcontrib>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</creatorcontrib><description>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b03101</identifier><identifier>PMID: 28043118</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural production ; Atmospherics ; Bacteria ; Carbon dioxide ; Carbon Dioxide - metabolism ; Denitrification ; Fertilizers ; Fixation ; Legumes ; Mathematical analysis ; Medicago sativa - enzymology ; Medicago sativa - metabolism ; Medicago sativa - microbiology ; Mixing ratios ; Nitrogen ; Nitrogen - metabolism ; Nitrogen Fixation ; Nitrogenase - metabolism ; Photosynthesis ; Rhizobium - enzymology ; Rhizobium - metabolism ; Spectrum Analysis, Raman - methods</subject><ispartof>Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1117-1122</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 17, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</citedby><cites>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</cites><orcidid>0000-0003-3358-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b03101$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b03101$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28043118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jochum, Tobias</creatorcontrib><creatorcontrib>Fastnacht, Agnes</creatorcontrib><creatorcontrib>Trumbore, Susan E</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><creatorcontrib>Frosch, Torsten</creatorcontrib><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</description><subject>Agricultural production</subject><subject>Atmospherics</subject><subject>Bacteria</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Denitrification</subject><subject>Fertilizers</subject><subject>Fixation</subject><subject>Legumes</subject><subject>Mathematical analysis</subject><subject>Medicago sativa - enzymology</subject><subject>Medicago sativa - metabolism</subject><subject>Medicago sativa - microbiology</subject><subject>Mixing ratios</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase - metabolism</subject><subject>Photosynthesis</subject><subject>Rhizobium - enzymology</subject><subject>Rhizobium - metabolism</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFqFDEUhoModlt9A5GAN72Z7UkmyWS8W9dWC7WC1eshk8lsU2aSMckU91V8WrPutoIXIhzIIfn-_4TzI_SKwJIAJWdKx6VyatC3ZlyKFkoC5AlaEE6hEFLSp2gBAGVBK4AjdBzjHQDJjHiOjqgEVhIiF-jnexuMTviLGpXDN1Pug4_aT1bjT0bFOZjRuBSx7_E76we_sVoN-NpmbGMcvrA_VLLe4dl1JuBrleaQ39fedXZ3H9_ilculhm36rVxNU_BK3-LeB3yT5m5r3ebRT0WDVzrZe5u2L9CzXg3RvDycJ-jbxfnX9cfi6vOHy_XqqlCspqkQLRWl7DQQVTPCe9nxtmNdXTHSE8Flq1hJhYJSV1IyKfpeMs4IBSkrSmVdnqDTvW_-2PfZxNSMNmozDMoZP8eGyKquZU0F_w-UcxCcM5bRN3-hd34OeQ87SgDUpBRVptie0nnrMZi-mYIdVdg2BJpdzE2OuXmIuTnEnGWvD-ZzO5ruUfSQawZgD-zkfwb_y_MXQSC3cQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Jochum, Tobias</creator><creator>Fastnacht, Agnes</creator><creator>Trumbore, Susan E</creator><creator>Popp, Jürgen</creator><creator>Frosch, Torsten</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3358-8878</orcidid></search><sort><creationdate>20170117</creationdate><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><author>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural production</topic><topic>Atmospherics</topic><topic>Bacteria</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Denitrification</topic><topic>Fertilizers</topic><topic>Fixation</topic><topic>Legumes</topic><topic>Mathematical analysis</topic><topic>Medicago sativa - enzymology</topic><topic>Medicago sativa - metabolism</topic><topic>Medicago sativa - microbiology</topic><topic>Mixing ratios</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase - metabolism</topic><topic>Photosynthesis</topic><topic>Rhizobium - enzymology</topic><topic>Rhizobium - metabolism</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jochum, Tobias</creatorcontrib><creatorcontrib>Fastnacht, Agnes</creatorcontrib><creatorcontrib>Trumbore, Susan E</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><creatorcontrib>Frosch, Torsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jochum, Tobias</au><au>Fastnacht, Agnes</au><au>Trumbore, Susan E</au><au>Popp, Jürgen</au><au>Frosch, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>89</volume><issue>2</issue><spage>1117</spage><epage>1122</epage><pages>1117-1122</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28043118</pmid><doi>10.1021/acs.analchem.6b03101</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3358-8878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1117-1122
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1879989265
source ACS Publications; MEDLINE
subjects Agricultural production
Atmospherics
Bacteria
Carbon dioxide
Carbon Dioxide - metabolism
Denitrification
Fertilizers
Fixation
Legumes
Mathematical analysis
Medicago sativa - enzymology
Medicago sativa - metabolism
Medicago sativa - microbiology
Mixing ratios
Nitrogen
Nitrogen - metabolism
Nitrogen Fixation
Nitrogenase - metabolism
Photosynthesis
Rhizobium - enzymology
Rhizobium - metabolism
Spectrum Analysis, Raman - methods
title Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Raman%20Spectroscopic%20Measurements%20of%20Biological%20Nitrogen%20Fixation%20under%20Natural%20Conditions:%20An%20Analytical%20Approach%20for%20Studying%20Nitrogenase%20Activity&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jochum,%20Tobias&rft.date=2017-01-17&rft.volume=89&rft.issue=2&rft.spage=1117&rft.epage=1122&rft.pages=1117-1122&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b03101&rft_dat=%3Cproquest_cross%3E4305036411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860091367&rft_id=info:pmid/28043118&rfr_iscdi=true