Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity
Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and redu...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2017-01, Vol.89 (2), p.1117-1122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 2 |
container_start_page | 1117 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Jochum, Tobias Fastnacht, Agnes Trumbore, Susan E Popp, Jürgen Frosch, Torsten |
description | Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere. |
doi_str_mv | 10.1021/acs.analchem.6b03101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879989265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4305036411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</originalsourceid><addsrcrecordid>eNqNkdFqFDEUhoModlt9A5GAN72Z7UkmyWS8W9dWC7WC1eshk8lsU2aSMckU91V8WrPutoIXIhzIIfn-_4TzI_SKwJIAJWdKx6VyatC3ZlyKFkoC5AlaEE6hEFLSp2gBAGVBK4AjdBzjHQDJjHiOjqgEVhIiF-jnexuMTviLGpXDN1Pug4_aT1bjT0bFOZjRuBSx7_E76we_sVoN-NpmbGMcvrA_VLLe4dl1JuBrleaQ39fedXZ3H9_ilculhm36rVxNU_BK3-LeB3yT5m5r3ebRT0WDVzrZe5u2L9CzXg3RvDycJ-jbxfnX9cfi6vOHy_XqqlCspqkQLRWl7DQQVTPCe9nxtmNdXTHSE8Flq1hJhYJSV1IyKfpeMs4IBSkrSmVdnqDTvW_-2PfZxNSMNmozDMoZP8eGyKquZU0F_w-UcxCcM5bRN3-hd34OeQ87SgDUpBRVptie0nnrMZi-mYIdVdg2BJpdzE2OuXmIuTnEnGWvD-ZzO5ruUfSQawZgD-zkfwb_y_MXQSC3cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860091367</pqid></control><display><type>article</type><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><source>ACS Publications</source><source>MEDLINE</source><creator>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</creator><creatorcontrib>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</creatorcontrib><description>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b03101</identifier><identifier>PMID: 28043118</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural production ; Atmospherics ; Bacteria ; Carbon dioxide ; Carbon Dioxide - metabolism ; Denitrification ; Fertilizers ; Fixation ; Legumes ; Mathematical analysis ; Medicago sativa - enzymology ; Medicago sativa - metabolism ; Medicago sativa - microbiology ; Mixing ratios ; Nitrogen ; Nitrogen - metabolism ; Nitrogen Fixation ; Nitrogenase - metabolism ; Photosynthesis ; Rhizobium - enzymology ; Rhizobium - metabolism ; Spectrum Analysis, Raman - methods</subject><ispartof>Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1117-1122</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 17, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</citedby><cites>FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</cites><orcidid>0000-0003-3358-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b03101$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b03101$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28043118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jochum, Tobias</creatorcontrib><creatorcontrib>Fastnacht, Agnes</creatorcontrib><creatorcontrib>Trumbore, Susan E</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><creatorcontrib>Frosch, Torsten</creatorcontrib><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</description><subject>Agricultural production</subject><subject>Atmospherics</subject><subject>Bacteria</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Denitrification</subject><subject>Fertilizers</subject><subject>Fixation</subject><subject>Legumes</subject><subject>Mathematical analysis</subject><subject>Medicago sativa - enzymology</subject><subject>Medicago sativa - metabolism</subject><subject>Medicago sativa - microbiology</subject><subject>Mixing ratios</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase - metabolism</subject><subject>Photosynthesis</subject><subject>Rhizobium - enzymology</subject><subject>Rhizobium - metabolism</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFqFDEUhoModlt9A5GAN72Z7UkmyWS8W9dWC7WC1eshk8lsU2aSMckU91V8WrPutoIXIhzIIfn-_4TzI_SKwJIAJWdKx6VyatC3ZlyKFkoC5AlaEE6hEFLSp2gBAGVBK4AjdBzjHQDJjHiOjqgEVhIiF-jnexuMTviLGpXDN1Pug4_aT1bjT0bFOZjRuBSx7_E76we_sVoN-NpmbGMcvrA_VLLe4dl1JuBrleaQ39fedXZ3H9_ilculhm36rVxNU_BK3-LeB3yT5m5r3ebRT0WDVzrZe5u2L9CzXg3RvDycJ-jbxfnX9cfi6vOHy_XqqlCspqkQLRWl7DQQVTPCe9nxtmNdXTHSE8Flq1hJhYJSV1IyKfpeMs4IBSkrSmVdnqDTvW_-2PfZxNSMNmozDMoZP8eGyKquZU0F_w-UcxCcM5bRN3-hd34OeQ87SgDUpBRVptie0nnrMZi-mYIdVdg2BJpdzE2OuXmIuTnEnGWvD-ZzO5ruUfSQawZgD-zkfwb_y_MXQSC3cQ</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Jochum, Tobias</creator><creator>Fastnacht, Agnes</creator><creator>Trumbore, Susan E</creator><creator>Popp, Jürgen</creator><creator>Frosch, Torsten</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3358-8878</orcidid></search><sort><creationdate>20170117</creationdate><title>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</title><author>Jochum, Tobias ; Fastnacht, Agnes ; Trumbore, Susan E ; Popp, Jürgen ; Frosch, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-6b2638dc01a9415f8d5bd4d9741f1658ba4326a03c788486ff845412088722893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural production</topic><topic>Atmospherics</topic><topic>Bacteria</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Denitrification</topic><topic>Fertilizers</topic><topic>Fixation</topic><topic>Legumes</topic><topic>Mathematical analysis</topic><topic>Medicago sativa - enzymology</topic><topic>Medicago sativa - metabolism</topic><topic>Medicago sativa - microbiology</topic><topic>Mixing ratios</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase - metabolism</topic><topic>Photosynthesis</topic><topic>Rhizobium - enzymology</topic><topic>Rhizobium - metabolism</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jochum, Tobias</creatorcontrib><creatorcontrib>Fastnacht, Agnes</creatorcontrib><creatorcontrib>Trumbore, Susan E</creatorcontrib><creatorcontrib>Popp, Jürgen</creatorcontrib><creatorcontrib>Frosch, Torsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jochum, Tobias</au><au>Fastnacht, Agnes</au><au>Trumbore, Susan E</au><au>Popp, Jürgen</au><au>Frosch, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>89</volume><issue>2</issue><spage>1117</spage><epage>1122</epage><pages>1117-1122</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)−1 h–1 of a Medicago sativa–Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28043118</pmid><doi>10.1021/acs.analchem.6b03101</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3358-8878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1117-1122 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879989265 |
source | ACS Publications; MEDLINE |
subjects | Agricultural production Atmospherics Bacteria Carbon dioxide Carbon Dioxide - metabolism Denitrification Fertilizers Fixation Legumes Mathematical analysis Medicago sativa - enzymology Medicago sativa - metabolism Medicago sativa - microbiology Mixing ratios Nitrogen Nitrogen - metabolism Nitrogen Fixation Nitrogenase - metabolism Photosynthesis Rhizobium - enzymology Rhizobium - metabolism Spectrum Analysis, Raman - methods |
title | Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Raman%20Spectroscopic%20Measurements%20of%20Biological%20Nitrogen%20Fixation%20under%20Natural%20Conditions:%20An%20Analytical%20Approach%20for%20Studying%20Nitrogenase%20Activity&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jochum,%20Tobias&rft.date=2017-01-17&rft.volume=89&rft.issue=2&rft.spage=1117&rft.epage=1122&rft.pages=1117-1122&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b03101&rft_dat=%3Cproquest_cross%3E4305036411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860091367&rft_id=info:pmid/28043118&rfr_iscdi=true |