Development and Characterization of a 3D Printed, Keratin-Based Hydrogel

Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2017, Vol.45 (1), p.237-248
Hauptverfasser: Placone, Jesse K., Navarro, Javier, Laslo, Gregory W., Lerman, Max J., Gabard, Alexis R., Herendeen, Gregory J., Falco, Erin E., Tomblyn, Seth, Burnett, Luke, Fisher, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 1
container_start_page 237
container_title Annals of biomedical engineering
container_volume 45
creator Placone, Jesse K.
Navarro, Javier
Laslo, Gregory W.
Lerman, Max J.
Gabard, Alexis R.
Herendeen, Gregory J.
Falco, Erin E.
Tomblyn, Seth
Burnett, Luke
Fisher, John P.
description Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.
doi_str_mv 10.1007/s10439-016-1621-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879988736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4293143681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVJiJ2PH9BLWMilhyjR6GukY2O3dYkhOSRnIa-07ob1riutC-6vzxq7pQQKOc1hnvcdhoeQj8BugDG8zcCksJSBpqA5UPxAxqBQUKuNPiJjxiyj2mo5Iqc5vzAGYIQ6ISOOwK1AGJPZNP6KTbdexbYvfBuKyQ-ffNnHVP_2fd21RVcVvhDT4jHVbR_DdXEf07Bp6Z3PMRSzbUjdMjbn5LjyTY4Xh3lGnr9-eZrM6Pzh2_fJ5zktpdU95UZ5IwJ6LT0gAwRfSulDCKyEUGlukUfFhWILNMBLVMrAQrCgBddYKXFGPu1716n7uYm5d6s6l7FpfBu7TXZg0FpjUOh3oMpKIzXCO1CutWFSigG9eoO-dJvUDj_vChVHKfWOgj1Vpi7nFCu3TvXKp60D5nby3F6eG-S5nTyHQ-by0LxZrGL4m_hjawD4HsjDql3G9M_p_7a-AvfioEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855274463</pqid></control><display><type>article</type><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</creator><creatorcontrib>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</creatorcontrib><description>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-016-1621-7</identifier><identifier>PMID: 27129371</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3D printing ; Additive Manufacturing of Biomaterials ; Animals ; Biochemistry ; Biodegradation ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cell Line ; Classical Mechanics ; Crosslinking ; Cytotoxicity ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Keratins ; Keratins - chemistry ; Keratins - pharmacology ; Materials Testing ; Mice ; Organs ; Polymers ; Printing ; Printing, Three-Dimensional ; Scaffolds ; Tissue engineering ; Tissue Scaffolds - chemistry ; Tissues ; Toxicity</subject><ispartof>Annals of biomedical engineering, 2017, Vol.45 (1), p.237-248</ispartof><rights>Biomedical Engineering Society 2016</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</citedby><cites>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-016-1621-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-016-1621-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Placone, Jesse K.</creatorcontrib><creatorcontrib>Navarro, Javier</creatorcontrib><creatorcontrib>Laslo, Gregory W.</creatorcontrib><creatorcontrib>Lerman, Max J.</creatorcontrib><creatorcontrib>Gabard, Alexis R.</creatorcontrib><creatorcontrib>Herendeen, Gregory J.</creatorcontrib><creatorcontrib>Falco, Erin E.</creatorcontrib><creatorcontrib>Tomblyn, Seth</creatorcontrib><creatorcontrib>Burnett, Luke</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</description><subject>3D printing</subject><subject>Additive Manufacturing of Biomaterials</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cell Line</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Keratins</subject><subject>Keratins - chemistry</subject><subject>Keratins - pharmacology</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Organs</subject><subject>Polymers</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tissues</subject><subject>Toxicity</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rGzEQhkVJiJ2PH9BLWMilhyjR6GukY2O3dYkhOSRnIa-07ob1riutC-6vzxq7pQQKOc1hnvcdhoeQj8BugDG8zcCksJSBpqA5UPxAxqBQUKuNPiJjxiyj2mo5Iqc5vzAGYIQ6ISOOwK1AGJPZNP6KTbdexbYvfBuKyQ-ffNnHVP_2fd21RVcVvhDT4jHVbR_DdXEf07Bp6Z3PMRSzbUjdMjbn5LjyTY4Xh3lGnr9-eZrM6Pzh2_fJ5zktpdU95UZ5IwJ6LT0gAwRfSulDCKyEUGlukUfFhWILNMBLVMrAQrCgBddYKXFGPu1716n7uYm5d6s6l7FpfBu7TXZg0FpjUOh3oMpKIzXCO1CutWFSigG9eoO-dJvUDj_vChVHKfWOgj1Vpi7nFCu3TvXKp60D5nby3F6eG-S5nTyHQ-by0LxZrGL4m_hjawD4HsjDql3G9M_p_7a-AvfioEA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Placone, Jesse K.</creator><creator>Navarro, Javier</creator><creator>Laslo, Gregory W.</creator><creator>Lerman, Max J.</creator><creator>Gabard, Alexis R.</creator><creator>Herendeen, Gregory J.</creator><creator>Falco, Erin E.</creator><creator>Tomblyn, Seth</creator><creator>Burnett, Luke</creator><creator>Fisher, John P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><author>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D printing</topic><topic>Additive Manufacturing of Biomaterials</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cell Line</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Keratins</topic><topic>Keratins - chemistry</topic><topic>Keratins - pharmacology</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Organs</topic><topic>Polymers</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tissues</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Placone, Jesse K.</creatorcontrib><creatorcontrib>Navarro, Javier</creatorcontrib><creatorcontrib>Laslo, Gregory W.</creatorcontrib><creatorcontrib>Lerman, Max J.</creatorcontrib><creatorcontrib>Gabard, Alexis R.</creatorcontrib><creatorcontrib>Herendeen, Gregory J.</creatorcontrib><creatorcontrib>Falco, Erin E.</creatorcontrib><creatorcontrib>Tomblyn, Seth</creatorcontrib><creatorcontrib>Burnett, Luke</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Placone, Jesse K.</au><au>Navarro, Javier</au><au>Laslo, Gregory W.</au><au>Lerman, Max J.</au><au>Gabard, Alexis R.</au><au>Herendeen, Gregory J.</au><au>Falco, Erin E.</au><au>Tomblyn, Seth</au><au>Burnett, Luke</au><au>Fisher, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2017</date><risdate>2017</risdate><volume>45</volume><issue>1</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs via UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27129371</pmid><doi>10.1007/s10439-016-1621-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2017, Vol.45 (1), p.237-248
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_1879988736
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 3D printing
Additive Manufacturing of Biomaterials
Animals
Biochemistry
Biodegradation
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Cell Line
Classical Mechanics
Crosslinking
Cytotoxicity
Fibroblasts - cytology
Fibroblasts - metabolism
Humans
Hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
Keratins
Keratins - chemistry
Keratins - pharmacology
Materials Testing
Mice
Organs
Polymers
Printing
Printing, Three-Dimensional
Scaffolds
Tissue engineering
Tissue Scaffolds - chemistry
Tissues
Toxicity
title Development and Characterization of a 3D Printed, Keratin-Based Hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Characterization%20of%20a%203D%20Printed,%20Keratin-Based%20Hydrogel&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Placone,%20Jesse%20K.&rft.date=2017&rft.volume=45&rft.issue=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-016-1621-7&rft_dat=%3Cproquest_cross%3E4293143681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855274463&rft_id=info:pmid/27129371&rfr_iscdi=true