Development and Characterization of a 3D Printed, Keratin-Based Hydrogel
Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2017, Vol.45 (1), p.237-248 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | Annals of biomedical engineering |
container_volume | 45 |
creator | Placone, Jesse K. Navarro, Javier Laslo, Gregory W. Lerman, Max J. Gabard, Alexis R. Herendeen, Gregory J. Falco, Erin E. Tomblyn, Seth Burnett, Luke Fisher, John P. |
description | Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs
via
UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications. |
doi_str_mv | 10.1007/s10439-016-1621-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879988736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4293143681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVJiJ2PH9BLWMilhyjR6GukY2O3dYkhOSRnIa-07ob1riutC-6vzxq7pQQKOc1hnvcdhoeQj8BugDG8zcCksJSBpqA5UPxAxqBQUKuNPiJjxiyj2mo5Iqc5vzAGYIQ6ISOOwK1AGJPZNP6KTbdexbYvfBuKyQ-ffNnHVP_2fd21RVcVvhDT4jHVbR_DdXEf07Bp6Z3PMRSzbUjdMjbn5LjyTY4Xh3lGnr9-eZrM6Pzh2_fJ5zktpdU95UZ5IwJ6LT0gAwRfSulDCKyEUGlukUfFhWILNMBLVMrAQrCgBddYKXFGPu1716n7uYm5d6s6l7FpfBu7TXZg0FpjUOh3oMpKIzXCO1CutWFSigG9eoO-dJvUDj_vChVHKfWOgj1Vpi7nFCu3TvXKp60D5nby3F6eG-S5nTyHQ-by0LxZrGL4m_hjawD4HsjDql3G9M_p_7a-AvfioEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855274463</pqid></control><display><type>article</type><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</creator><creatorcontrib>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</creatorcontrib><description>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs
via
UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-016-1621-7</identifier><identifier>PMID: 27129371</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3D printing ; Additive Manufacturing of Biomaterials ; Animals ; Biochemistry ; Biodegradation ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cell Line ; Classical Mechanics ; Crosslinking ; Cytotoxicity ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Keratins ; Keratins - chemistry ; Keratins - pharmacology ; Materials Testing ; Mice ; Organs ; Polymers ; Printing ; Printing, Three-Dimensional ; Scaffolds ; Tissue engineering ; Tissue Scaffolds - chemistry ; Tissues ; Toxicity</subject><ispartof>Annals of biomedical engineering, 2017, Vol.45 (1), p.237-248</ispartof><rights>Biomedical Engineering Society 2016</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</citedby><cites>FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-016-1621-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-016-1621-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27129371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Placone, Jesse K.</creatorcontrib><creatorcontrib>Navarro, Javier</creatorcontrib><creatorcontrib>Laslo, Gregory W.</creatorcontrib><creatorcontrib>Lerman, Max J.</creatorcontrib><creatorcontrib>Gabard, Alexis R.</creatorcontrib><creatorcontrib>Herendeen, Gregory J.</creatorcontrib><creatorcontrib>Falco, Erin E.</creatorcontrib><creatorcontrib>Tomblyn, Seth</creatorcontrib><creatorcontrib>Burnett, Luke</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs
via
UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</description><subject>3D printing</subject><subject>Additive Manufacturing of Biomaterials</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cell Line</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Keratins</subject><subject>Keratins - chemistry</subject><subject>Keratins - pharmacology</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Organs</subject><subject>Polymers</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tissues</subject><subject>Toxicity</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rGzEQhkVJiJ2PH9BLWMilhyjR6GukY2O3dYkhOSRnIa-07ob1riutC-6vzxq7pQQKOc1hnvcdhoeQj8BugDG8zcCksJSBpqA5UPxAxqBQUKuNPiJjxiyj2mo5Iqc5vzAGYIQ6ISOOwK1AGJPZNP6KTbdexbYvfBuKyQ-ffNnHVP_2fd21RVcVvhDT4jHVbR_DdXEf07Bp6Z3PMRSzbUjdMjbn5LjyTY4Xh3lGnr9-eZrM6Pzh2_fJ5zktpdU95UZ5IwJ6LT0gAwRfSulDCKyEUGlukUfFhWILNMBLVMrAQrCgBddYKXFGPu1716n7uYm5d6s6l7FpfBu7TXZg0FpjUOh3oMpKIzXCO1CutWFSigG9eoO-dJvUDj_vChVHKfWOgj1Vpi7nFCu3TvXKp60D5nby3F6eG-S5nTyHQ-by0LxZrGL4m_hjawD4HsjDql3G9M_p_7a-AvfioEA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Placone, Jesse K.</creator><creator>Navarro, Javier</creator><creator>Laslo, Gregory W.</creator><creator>Lerman, Max J.</creator><creator>Gabard, Alexis R.</creator><creator>Herendeen, Gregory J.</creator><creator>Falco, Erin E.</creator><creator>Tomblyn, Seth</creator><creator>Burnett, Luke</creator><creator>Fisher, John P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</title><author>Placone, Jesse K. ; Navarro, Javier ; Laslo, Gregory W. ; Lerman, Max J. ; Gabard, Alexis R. ; Herendeen, Gregory J. ; Falco, Erin E. ; Tomblyn, Seth ; Burnett, Luke ; Fisher, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-285a83d7a64a170171ac44addd0c1df62972e52350b7812c75581b30d63267f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D printing</topic><topic>Additive Manufacturing of Biomaterials</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cell Line</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Keratins</topic><topic>Keratins - chemistry</topic><topic>Keratins - pharmacology</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Organs</topic><topic>Polymers</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tissues</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Placone, Jesse K.</creatorcontrib><creatorcontrib>Navarro, Javier</creatorcontrib><creatorcontrib>Laslo, Gregory W.</creatorcontrib><creatorcontrib>Lerman, Max J.</creatorcontrib><creatorcontrib>Gabard, Alexis R.</creatorcontrib><creatorcontrib>Herendeen, Gregory J.</creatorcontrib><creatorcontrib>Falco, Erin E.</creatorcontrib><creatorcontrib>Tomblyn, Seth</creatorcontrib><creatorcontrib>Burnett, Luke</creatorcontrib><creatorcontrib>Fisher, John P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Placone, Jesse K.</au><au>Navarro, Javier</au><au>Laslo, Gregory W.</au><au>Lerman, Max J.</au><au>Gabard, Alexis R.</au><au>Herendeen, Gregory J.</au><au>Falco, Erin E.</au><au>Tomblyn, Seth</au><au>Burnett, Luke</au><au>Fisher, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Characterization of a 3D Printed, Keratin-Based Hydrogel</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2017</date><risdate>2017</risdate><volume>45</volume><issue>1</issue><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Keratin, a naturally-derived polymer derived from human hair, is physiologically biodegradable, provides adequate cell support, and can self-assemble or be crosslinked to form hydrogels. Nevertheless, it has had limited use in tissue engineering and has been mainly used as casted scaffolds for drug or growth factor delivery applications. Here, we present and assess a novel method for the printed, sequential production of 3D keratin scaffolds. Using a riboflavin-SPS-hydroquinone (initiator–catalyst–inhibitor) photosensitive solution we produced 3D keratin constructs
via
UV crosslinking in a lithography-based 3D printer. The hydrogels obtained have adequate printing resolution and result in compressive and dynamic mechanical properties, uptake and swelling capacities, cytotoxicity, and microstructural characteristics that are comparable or superior to those of casted keratin scaffolds previously reported. The novel keratin-based printing resin and printing methodology presented have the potential to impact future research by providing an avenue to rapidly and reproducibly manufacture patient-specific hydrogels for tissue engineering and regenerative medicine applications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27129371</pmid><doi>10.1007/s10439-016-1621-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2017, Vol.45 (1), p.237-248 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879988736 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 3D printing Additive Manufacturing of Biomaterials Animals Biochemistry Biodegradation Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cell Line Classical Mechanics Crosslinking Cytotoxicity Fibroblasts - cytology Fibroblasts - metabolism Humans Hydrogels Hydrogels - chemistry Hydrogels - pharmacology Keratins Keratins - chemistry Keratins - pharmacology Materials Testing Mice Organs Polymers Printing Printing, Three-Dimensional Scaffolds Tissue engineering Tissue Scaffolds - chemistry Tissues Toxicity |
title | Development and Characterization of a 3D Printed, Keratin-Based Hydrogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Characterization%20of%20a%203D%20Printed,%20Keratin-Based%20Hydrogel&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Placone,%20Jesse%20K.&rft.date=2017&rft.volume=45&rft.issue=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-016-1621-7&rft_dat=%3Cproquest_cross%3E4293143681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855274463&rft_id=info:pmid/27129371&rfr_iscdi=true |