Sobolev functions on varifolds
This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assum...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2016-12, Vol.113 (6), p.725-774 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 6 |
container_start_page | 725 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 113 |
creator | Menne, Ulrich |
description | This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts.
Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well.
Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions. |
doi_str_mv | 10.1112/plms/pdw023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879987490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879987490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</originalsourceid><addsrcrecordid>eNp90EFLwzAYxvEgCtbpybvsKEjd-zZvk_Yow6kwUdgO3kKaJlDJmtqsG_v2btSzp-fy4zn8GbtFeETEbNb5TZx19R4yfsYSJAFpRvR1zhKAjFKBmF-yqxi_AUBwnifsbhWq4O1u6obWbJvQxmlopzvdNy74Ol6zC6d9tDd_O2HrxfN6_pouP17e5k_L1HAo8jSHmmcud5WlyoAkrckZY1xBNS-tJiGtxtrogkBg6dAVgkgenZEkS8En7H687frwM9i4VZsmGuu9bm0YosJClmUhqYQjfRip6UOMvXWq65uN7g8KQZ0iqFMENUY4ahz1vvH28B9Vn8v3Fcgs57-xsWCB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879987490</pqid></control><display><type>article</type><title>Sobolev functions on varifolds</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Menne, Ulrich</creator><creatorcontrib>Menne, Ulrich</creatorcontrib><description>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts.
Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well.
Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdw023</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Continuity (mathematics) ; Curvature ; Derivatives ; Euclidean geometry ; Functions (mathematics) ; Geodesy ; Mathematical analysis ; Sobolev space</subject><ispartof>Proceedings of the London Mathematical Society, 2016-12, Vol.113 (6), p.725-774</ispartof><rights>2016 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</citedby><cites>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpdw023$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpdw023$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Menne, Ulrich</creatorcontrib><title>Sobolev functions on varifolds</title><title>Proceedings of the London Mathematical Society</title><description>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts.
Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well.
Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</description><subject>Continuity (mathematics)</subject><subject>Curvature</subject><subject>Derivatives</subject><subject>Euclidean geometry</subject><subject>Functions (mathematics)</subject><subject>Geodesy</subject><subject>Mathematical analysis</subject><subject>Sobolev space</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYxvEgCtbpybvsKEjd-zZvk_Yow6kwUdgO3kKaJlDJmtqsG_v2btSzp-fy4zn8GbtFeETEbNb5TZx19R4yfsYSJAFpRvR1zhKAjFKBmF-yqxi_AUBwnifsbhWq4O1u6obWbJvQxmlopzvdNy74Ol6zC6d9tDd_O2HrxfN6_pouP17e5k_L1HAo8jSHmmcud5WlyoAkrckZY1xBNS-tJiGtxtrogkBg6dAVgkgenZEkS8En7H687frwM9i4VZsmGuu9bm0YosJClmUhqYQjfRip6UOMvXWq65uN7g8KQZ0iqFMENUY4ahz1vvH28B9Vn8v3Fcgs57-xsWCB</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Menne, Ulrich</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Sobolev functions on varifolds</title><author>Menne, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuity (mathematics)</topic><topic>Curvature</topic><topic>Derivatives</topic><topic>Euclidean geometry</topic><topic>Functions (mathematics)</topic><topic>Geodesy</topic><topic>Mathematical analysis</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menne, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menne, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev functions on varifolds</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2016-12</date><risdate>2016</risdate><volume>113</volume><issue>6</issue><spage>725</spage><epage>774</epage><pages>725-774</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts.
Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well.
Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdw023</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2016-12, Vol.113 (6), p.725-774 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_proquest_miscellaneous_1879987490 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Continuity (mathematics) Curvature Derivatives Euclidean geometry Functions (mathematics) Geodesy Mathematical analysis Sobolev space |
title | Sobolev functions on varifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%20functions%20on%20varifolds&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Menne,%20Ulrich&rft.date=2016-12&rft.volume=113&rft.issue=6&rft.spage=725&rft.epage=774&rft.pages=725-774&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdw023&rft_dat=%3Cproquest_cross%3E1879987490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879987490&rft_id=info:pmid/&rfr_iscdi=true |