Sobolev functions on varifolds

This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2016-12, Vol.113 (6), p.725-774
1. Verfasser: Menne, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 6
container_start_page 725
container_title Proceedings of the London Mathematical Society
container_volume 113
creator Menne, Ulrich
description This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well. Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.
doi_str_mv 10.1112/plms/pdw023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879987490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879987490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</originalsourceid><addsrcrecordid>eNp90EFLwzAYxvEgCtbpybvsKEjd-zZvk_Yow6kwUdgO3kKaJlDJmtqsG_v2btSzp-fy4zn8GbtFeETEbNb5TZx19R4yfsYSJAFpRvR1zhKAjFKBmF-yqxi_AUBwnifsbhWq4O1u6obWbJvQxmlopzvdNy74Ol6zC6d9tDd_O2HrxfN6_pouP17e5k_L1HAo8jSHmmcud5WlyoAkrckZY1xBNS-tJiGtxtrogkBg6dAVgkgenZEkS8En7H687frwM9i4VZsmGuu9bm0YosJClmUhqYQjfRip6UOMvXWq65uN7g8KQZ0iqFMENUY4ahz1vvH28B9Vn8v3Fcgs57-xsWCB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879987490</pqid></control><display><type>article</type><title>Sobolev functions on varifolds</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Menne, Ulrich</creator><creatorcontrib>Menne, Ulrich</creatorcontrib><description>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well. Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdw023</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Continuity (mathematics) ; Curvature ; Derivatives ; Euclidean geometry ; Functions (mathematics) ; Geodesy ; Mathematical analysis ; Sobolev space</subject><ispartof>Proceedings of the London Mathematical Society, 2016-12, Vol.113 (6), p.725-774</ispartof><rights>2016 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</citedby><cites>FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpdw023$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpdw023$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Menne, Ulrich</creatorcontrib><title>Sobolev functions on varifolds</title><title>Proceedings of the London Mathematical Society</title><description>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well. Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</description><subject>Continuity (mathematics)</subject><subject>Curvature</subject><subject>Derivatives</subject><subject>Euclidean geometry</subject><subject>Functions (mathematics)</subject><subject>Geodesy</subject><subject>Mathematical analysis</subject><subject>Sobolev space</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYxvEgCtbpybvsKEjd-zZvk_Yow6kwUdgO3kKaJlDJmtqsG_v2btSzp-fy4zn8GbtFeETEbNb5TZx19R4yfsYSJAFpRvR1zhKAjFKBmF-yqxi_AUBwnifsbhWq4O1u6obWbJvQxmlopzvdNy74Ol6zC6d9tDd_O2HrxfN6_pouP17e5k_L1HAo8jSHmmcud5WlyoAkrckZY1xBNS-tJiGtxtrogkBg6dAVgkgenZEkS8En7H687frwM9i4VZsmGuu9bm0YosJClmUhqYQjfRip6UOMvXWq65uN7g8KQZ0iqFMENUY4ahz1vvH28B9Vn8v3Fcgs57-xsWCB</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Menne, Ulrich</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Sobolev functions on varifolds</title><author>Menne, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3085-50d32f5fbe4bc074aa4fcccf84d39ea467ea1dca840619f1f8644774ac747963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Continuity (mathematics)</topic><topic>Curvature</topic><topic>Derivatives</topic><topic>Euclidean geometry</topic><topic>Functions (mathematics)</topic><topic>Geodesy</topic><topic>Mathematical analysis</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menne, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menne, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev functions on varifolds</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2016-12</date><risdate>2016</risdate><volume>113</volume><issue>6</issue><spage>725</spage><epage>774</epage><pages>725-774</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>This paper introduces first‐order Sobolev spaces on certain rectifiable varifolds. These complete locally convex spaces are contained in the generally non‐linear class of generalised weakly differentiable functions and share key functional analytic properties with their Euclidean counterparts. Assuming the varifold to satisfy a uniform lower density bound and a dimensionally critical summability condition on its mean curvature, the following statements hold. Firstly, continuous and compact embeddings of Sobolev spaces into Lebesgue spaces and spaces of continuous functions are available. Secondly, the geodesic distance associated to the varifold is a continuous, not necessarily Hölder continuous Sobolev function with bounded derivative. Thirdly, if the varifold additionally has bounded mean curvature and finite measure, then the present Sobolev spaces are isomorphic to those previously available for finite Radon measures yielding many new results for those classes as well. Suitable versions of the embedding results obtained for Sobolev functions hold in the larger class of generalised weakly differentiable functions.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdw023</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2016-12, Vol.113 (6), p.725-774
issn 0024-6115
1460-244X
language eng
recordid cdi_proquest_miscellaneous_1879987490
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Continuity (mathematics)
Curvature
Derivatives
Euclidean geometry
Functions (mathematics)
Geodesy
Mathematical analysis
Sobolev space
title Sobolev functions on varifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%20functions%20on%20varifolds&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Menne,%20Ulrich&rft.date=2016-12&rft.volume=113&rft.issue=6&rft.spage=725&rft.epage=774&rft.pages=725-774&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdw023&rft_dat=%3Cproquest_cross%3E1879987490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879987490&rft_id=info:pmid/&rfr_iscdi=true