Micromechanics of hydroentangled nonwoven fabrics
The mechanics of nonwoven fabrics is largely dependent on fiber properties, and other physical factors such as structural arrangement and degree of entanglement of the fibers. In this study, modeled and experimental stress–strain behaviors of uniaxially loaded hydroentangled nonwoven fabrics have be...
Gespeichert in:
Veröffentlicht in: | Textile research journal 2017-01, Vol.87 (2), p.135-146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Textile research journal |
container_volume | 87 |
creator | Moyo, Doice Anandjiwala, Rajesh D Patnaik, Asis |
description | The mechanics of nonwoven fabrics is largely dependent on fiber properties, and other physical factors such as structural arrangement and degree of entanglement of the fibers. In this study, modeled and experimental stress–strain behaviors of uniaxially loaded hydroentangled nonwoven fabrics have been analyzed and compared. The theoretical values from the model were deduced from the measured properties of micro-samples, namely, fiber volume faction, orientation distribution and mechanical properties. Testing of the micro-samples was performed on a Deben Microtest Module fitted in the FEI Quanta 200 Scanning Electron Microscope. The experimental stress–strain results show that the structure is in the linear region when the modeled results approach the highest specific stress. Also, the theoretical models highly overestimate the specific stress of the hydroentangled nonwoven fabrics. The results show that the application of the model was limited in predicting tensile stress. Furthermore, a trapezoid method was used to quantify the actual deformation energy from the stress–strain graphs up to the ultimate tensile strength. The theoretical deformation energy was estimated and compared to the experimental values. The model was subsequently modified to improve its predictive capability. |
doi_str_mv | 10.1177/0040517515624877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879985695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0040517515624877</sage_id><sourcerecordid>4291574031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-58b9c5dccf2136d7c12a9d6d159002d4149317313bb2673c42b5bfd94fdf41593</originalsourceid><addsrcrecordid>eNp1kDtLA0EUhQdRMEZ7ywUbm9W5O-9Sgi-I2Gi9zM4j2bCZiTOJkn_vLLEQweoW5zuHcw9Cl4BvAIS4xZhiBoIB4w2VQhyhCQjKayGoPEaTUa5H_RSd5bzCGEsp5ATBS29SXDuz1KE3uYq-Wu5tii5sdVgMzlYhhq_46ULldZcKco5OvB6yu_i5U_T-cP82e6rnr4_Ps7t5bQhttjWTnTLMGuMbINwKA41WlltgCuPGUqCKgCBAuq7hghjadKzzVlFvPS0QmaLrQ-4mxY-dy9t23WfjhkEHF3e5BSmUkowrVtCrP-gq7lIo7QrFqJCU8DEQH6jycM7J-XaT-rVO-xZwO27Y_t2wWOqDJeuF-xX6H_8NGWtu-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854784369</pqid></control><display><type>article</type><title>Micromechanics of hydroentangled nonwoven fabrics</title><source>SAGE Complete</source><creator>Moyo, Doice ; Anandjiwala, Rajesh D ; Patnaik, Asis</creator><creatorcontrib>Moyo, Doice ; Anandjiwala, Rajesh D ; Patnaik, Asis</creatorcontrib><description>The mechanics of nonwoven fabrics is largely dependent on fiber properties, and other physical factors such as structural arrangement and degree of entanglement of the fibers. In this study, modeled and experimental stress–strain behaviors of uniaxially loaded hydroentangled nonwoven fabrics have been analyzed and compared. The theoretical values from the model were deduced from the measured properties of micro-samples, namely, fiber volume faction, orientation distribution and mechanical properties. Testing of the micro-samples was performed on a Deben Microtest Module fitted in the FEI Quanta 200 Scanning Electron Microscope. The experimental stress–strain results show that the structure is in the linear region when the modeled results approach the highest specific stress. Also, the theoretical models highly overestimate the specific stress of the hydroentangled nonwoven fabrics. The results show that the application of the model was limited in predicting tensile stress. Furthermore, a trapezoid method was used to quantify the actual deformation energy from the stress–strain graphs up to the ultimate tensile strength. The theoretical deformation energy was estimated and compared to the experimental values. The model was subsequently modified to improve its predictive capability.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/0040517515624877</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Authorship ; Bond strength ; Composite materials ; Deformation ; Fabrics ; Fibers ; Load ; Mathematical models ; Nonwoven fabrics ; Scanning electron microscopy ; Strain ; Stress-strain curves ; Stress-strain relationships ; Stresses ; Tensile strength ; Tensile stress ; Textiles ; Theory</subject><ispartof>Textile research journal, 2017-01, Vol.87 (2), p.135-146</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-58b9c5dccf2136d7c12a9d6d159002d4149317313bb2673c42b5bfd94fdf41593</citedby><cites>FETCH-LOGICAL-c342t-58b9c5dccf2136d7c12a9d6d159002d4149317313bb2673c42b5bfd94fdf41593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0040517515624877$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0040517515624877$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Moyo, Doice</creatorcontrib><creatorcontrib>Anandjiwala, Rajesh D</creatorcontrib><creatorcontrib>Patnaik, Asis</creatorcontrib><title>Micromechanics of hydroentangled nonwoven fabrics</title><title>Textile research journal</title><description>The mechanics of nonwoven fabrics is largely dependent on fiber properties, and other physical factors such as structural arrangement and degree of entanglement of the fibers. In this study, modeled and experimental stress–strain behaviors of uniaxially loaded hydroentangled nonwoven fabrics have been analyzed and compared. The theoretical values from the model were deduced from the measured properties of micro-samples, namely, fiber volume faction, orientation distribution and mechanical properties. Testing of the micro-samples was performed on a Deben Microtest Module fitted in the FEI Quanta 200 Scanning Electron Microscope. The experimental stress–strain results show that the structure is in the linear region when the modeled results approach the highest specific stress. Also, the theoretical models highly overestimate the specific stress of the hydroentangled nonwoven fabrics. The results show that the application of the model was limited in predicting tensile stress. Furthermore, a trapezoid method was used to quantify the actual deformation energy from the stress–strain graphs up to the ultimate tensile strength. The theoretical deformation energy was estimated and compared to the experimental values. The model was subsequently modified to improve its predictive capability.</description><subject>Authorship</subject><subject>Bond strength</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Fabrics</subject><subject>Fibers</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Nonwoven fabrics</subject><subject>Scanning electron microscopy</subject><subject>Strain</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Stresses</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Textiles</subject><subject>Theory</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kDtLA0EUhQdRMEZ7ywUbm9W5O-9Sgi-I2Gi9zM4j2bCZiTOJkn_vLLEQweoW5zuHcw9Cl4BvAIS4xZhiBoIB4w2VQhyhCQjKayGoPEaTUa5H_RSd5bzCGEsp5ATBS29SXDuz1KE3uYq-Wu5tii5sdVgMzlYhhq_46ULldZcKco5OvB6yu_i5U_T-cP82e6rnr4_Ps7t5bQhttjWTnTLMGuMbINwKA41WlltgCuPGUqCKgCBAuq7hghjadKzzVlFvPS0QmaLrQ-4mxY-dy9t23WfjhkEHF3e5BSmUkowrVtCrP-gq7lIo7QrFqJCU8DEQH6jycM7J-XaT-rVO-xZwO27Y_t2wWOqDJeuF-xX6H_8NGWtu-w</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Moyo, Doice</creator><creator>Anandjiwala, Rajesh D</creator><creator>Patnaik, Asis</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201701</creationdate><title>Micromechanics of hydroentangled nonwoven fabrics</title><author>Moyo, Doice ; Anandjiwala, Rajesh D ; Patnaik, Asis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-58b9c5dccf2136d7c12a9d6d159002d4149317313bb2673c42b5bfd94fdf41593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Authorship</topic><topic>Bond strength</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Fabrics</topic><topic>Fibers</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Nonwoven fabrics</topic><topic>Scanning electron microscopy</topic><topic>Strain</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Stresses</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Textiles</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moyo, Doice</creatorcontrib><creatorcontrib>Anandjiwala, Rajesh D</creatorcontrib><creatorcontrib>Patnaik, Asis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK & Ireland Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moyo, Doice</au><au>Anandjiwala, Rajesh D</au><au>Patnaik, Asis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics of hydroentangled nonwoven fabrics</atitle><jtitle>Textile research journal</jtitle><date>2017-01</date><risdate>2017</risdate><volume>87</volume><issue>2</issue><spage>135</spage><epage>146</epage><pages>135-146</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>The mechanics of nonwoven fabrics is largely dependent on fiber properties, and other physical factors such as structural arrangement and degree of entanglement of the fibers. In this study, modeled and experimental stress–strain behaviors of uniaxially loaded hydroentangled nonwoven fabrics have been analyzed and compared. The theoretical values from the model were deduced from the measured properties of micro-samples, namely, fiber volume faction, orientation distribution and mechanical properties. Testing of the micro-samples was performed on a Deben Microtest Module fitted in the FEI Quanta 200 Scanning Electron Microscope. The experimental stress–strain results show that the structure is in the linear region when the modeled results approach the highest specific stress. Also, the theoretical models highly overestimate the specific stress of the hydroentangled nonwoven fabrics. The results show that the application of the model was limited in predicting tensile stress. Furthermore, a trapezoid method was used to quantify the actual deformation energy from the stress–strain graphs up to the ultimate tensile strength. The theoretical deformation energy was estimated and compared to the experimental values. The model was subsequently modified to improve its predictive capability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0040517515624877</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile research journal, 2017-01, Vol.87 (2), p.135-146 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879985695 |
source | SAGE Complete |
subjects | Authorship Bond strength Composite materials Deformation Fabrics Fibers Load Mathematical models Nonwoven fabrics Scanning electron microscopy Strain Stress-strain curves Stress-strain relationships Stresses Tensile strength Tensile stress Textiles Theory |
title | Micromechanics of hydroentangled nonwoven fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics%20of%20hydroentangled%20nonwoven%20fabrics&rft.jtitle=Textile%20research%20journal&rft.au=Moyo,%20Doice&rft.date=2017-01&rft.volume=87&rft.issue=2&rft.spage=135&rft.epage=146&rft.pages=135-146&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/0040517515624877&rft_dat=%3Cproquest_cross%3E4291574031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854784369&rft_id=info:pmid/&rft_sage_id=10.1177_0040517515624877&rfr_iscdi=true |