Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials

Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a common, relatively low cost, and straightforward analytical technique for the study of trace quantities of metals in solid materials, but its applicability to nanocarbons (e.g., graphene and nanotubes) has suffered from the lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-12, Vol.88 (23), p.11783-11790
Hauptverfasser: Simoes, Filipa R. F, Batra, Nitin M, Warsama, Bashir H, Canlas, Christian G, Patole, Shashikant, Yapici, Tahir F, Costa, Pedro M. F. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11790
container_issue 23
container_start_page 11783
container_title Analytical chemistry (Washington)
container_volume 88
creator Simoes, Filipa R. F
Batra, Nitin M
Warsama, Bashir H
Canlas, Christian G
Patole, Shashikant
Yapici, Tahir F
Costa, Pedro M. F. J
description Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a common, relatively low cost, and straightforward analytical technique for the study of trace quantities of metals in solid materials, but its applicability to nanocarbons (e.g., graphene and nanotubes) has suffered from the lack of efficient digestion steps and certified reference materials (CRM). Here, various commercial and certified graphitic carbon materials were subjected to a “two-step” microwave-assisted acid digestion procedure, and the concentrations of up to 18 elements were analyzed by ICP-OES. With one exception (Sm), successful quantification of all certified elements in the two reference nanocarbons studied was achieved, hence validating the sample preparation approach used. The applicability of our “two-step” protocol was further confirmed for a commercial single-walled carbon nanotube sample. However, the digestion was markedly incomplete for all other commercial materials tested. Where possible, the digestion residues of the carbon materials analyzed (CRM included) were characterized to understand the structural changes that take place and how this may explain the challenge of disintegrating graphitic carbon. In this respect, it was found that solid state nuclear magnetic resonance holds considerable promise as a nonlocalized, easily interpretable, and reliable tool to access the efficient disintegration of these materials.
doi_str_mv 10.1021/acs.analchem.6b03407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879984400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879984400</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-3ec95ad7a11fc6847febc92c2bf368a1a3ad6e55b462ad79500fd3abcc04d2863</originalsourceid><addsrcrecordid>eNqFkUtv1TAQRi1E1d4-_gFCkdiwyWX8iO0sUVooUlEFatVlNHEm1FUeFztZwK_H0b0FiQWsxpLP91njw9grDlsOgr9DF7c4Yu8eadjqBqQC84JteCEg19aKl2wDADIXBuCEncb4BMA5cH3MToQxprSGb9juqqeBxhn77MuC4-w773D205jh2GZfKfp2oZhVjxjQzRT8z_3t1GUPNGeX_hvFmdqsorBm02nNVdMwUHA-tVYYmsR_xjWMfTxnR10adHGYZ-z-w9VddZ3f3H78VL2_yVEpPeeSXFlga5DzzmmrTEeNK4UTTSe1RY4SW01F0SgtElYWAF0rsXEOVCuslmfs7b53F6bvaYW5Hnx01Pc40rTEmltTllap9EX_R2WhrShMkdA3f6FP0xKShZVStgRQXCZK7SkXphgDdfUu-AHDj5pDvcqrk7z6WV59kJdirw_lSzNQ-zv0bCsBsAfW-J-H_9X5CxTDqeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848900413</pqid></control><display><type>article</type><title>Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials</title><source>American Chemical Society Journals</source><creator>Simoes, Filipa R. F ; Batra, Nitin M ; Warsama, Bashir H ; Canlas, Christian G ; Patole, Shashikant ; Yapici, Tahir F ; Costa, Pedro M. F. J</creator><creatorcontrib>Simoes, Filipa R. F ; Batra, Nitin M ; Warsama, Bashir H ; Canlas, Christian G ; Patole, Shashikant ; Yapici, Tahir F ; Costa, Pedro M. F. J</creatorcontrib><description>Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a common, relatively low cost, and straightforward analytical technique for the study of trace quantities of metals in solid materials, but its applicability to nanocarbons (e.g., graphene and nanotubes) has suffered from the lack of efficient digestion steps and certified reference materials (CRM). Here, various commercial and certified graphitic carbon materials were subjected to a “two-step” microwave-assisted acid digestion procedure, and the concentrations of up to 18 elements were analyzed by ICP-OES. With one exception (Sm), successful quantification of all certified elements in the two reference nanocarbons studied was achieved, hence validating the sample preparation approach used. The applicability of our “two-step” protocol was further confirmed for a commercial single-walled carbon nanotube sample. However, the digestion was markedly incomplete for all other commercial materials tested. Where possible, the digestion residues of the carbon materials analyzed (CRM included) were characterized to understand the structural changes that take place and how this may explain the challenge of disintegrating graphitic carbon. In this respect, it was found that solid state nuclear magnetic resonance holds considerable promise as a nonlocalized, easily interpretable, and reliable tool to access the efficient disintegration of these materials.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b03407</identifier><identifier>PMID: 27779871</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Carbon ; Digestion ; Disintegration ; Efficiency ; Graphene ; Nanostructure ; Nanotubes ; Residues ; Spectrum analysis</subject><ispartof>Analytical chemistry (Washington), 2016-12, Vol.88 (23), p.11783-11790</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 6, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-3ec95ad7a11fc6847febc92c2bf368a1a3ad6e55b462ad79500fd3abcc04d2863</citedby><cites>FETCH-LOGICAL-a446t-3ec95ad7a11fc6847febc92c2bf368a1a3ad6e55b462ad79500fd3abcc04d2863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b03407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b03407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27779871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simoes, Filipa R. F</creatorcontrib><creatorcontrib>Batra, Nitin M</creatorcontrib><creatorcontrib>Warsama, Bashir H</creatorcontrib><creatorcontrib>Canlas, Christian G</creatorcontrib><creatorcontrib>Patole, Shashikant</creatorcontrib><creatorcontrib>Yapici, Tahir F</creatorcontrib><creatorcontrib>Costa, Pedro M. F. J</creatorcontrib><title>Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a common, relatively low cost, and straightforward analytical technique for the study of trace quantities of metals in solid materials, but its applicability to nanocarbons (e.g., graphene and nanotubes) has suffered from the lack of efficient digestion steps and certified reference materials (CRM). Here, various commercial and certified graphitic carbon materials were subjected to a “two-step” microwave-assisted acid digestion procedure, and the concentrations of up to 18 elements were analyzed by ICP-OES. With one exception (Sm), successful quantification of all certified elements in the two reference nanocarbons studied was achieved, hence validating the sample preparation approach used. The applicability of our “two-step” protocol was further confirmed for a commercial single-walled carbon nanotube sample. However, the digestion was markedly incomplete for all other commercial materials tested. Where possible, the digestion residues of the carbon materials analyzed (CRM included) were characterized to understand the structural changes that take place and how this may explain the challenge of disintegrating graphitic carbon. In this respect, it was found that solid state nuclear magnetic resonance holds considerable promise as a nonlocalized, easily interpretable, and reliable tool to access the efficient disintegration of these materials.</description><subject>Analytical chemistry</subject><subject>Carbon</subject><subject>Digestion</subject><subject>Disintegration</subject><subject>Efficiency</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Residues</subject><subject>Spectrum analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQRi1E1d4-_gFCkdiwyWX8iO0sUVooUlEFatVlNHEm1FUeFztZwK_H0b0FiQWsxpLP91njw9grDlsOgr9DF7c4Yu8eadjqBqQC84JteCEg19aKl2wDADIXBuCEncb4BMA5cH3MToQxprSGb9juqqeBxhn77MuC4-w773D205jh2GZfKfp2oZhVjxjQzRT8z_3t1GUPNGeX_hvFmdqsorBm02nNVdMwUHA-tVYYmsR_xjWMfTxnR10adHGYZ-z-w9VddZ3f3H78VL2_yVEpPeeSXFlga5DzzmmrTEeNK4UTTSe1RY4SW01F0SgtElYWAF0rsXEOVCuslmfs7b53F6bvaYW5Hnx01Pc40rTEmltTllap9EX_R2WhrShMkdA3f6FP0xKShZVStgRQXCZK7SkXphgDdfUu-AHDj5pDvcqrk7z6WV59kJdirw_lSzNQ-zv0bCsBsAfW-J-H_9X5CxTDqeA</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Simoes, Filipa R. F</creator><creator>Batra, Nitin M</creator><creator>Warsama, Bashir H</creator><creator>Canlas, Christian G</creator><creator>Patole, Shashikant</creator><creator>Yapici, Tahir F</creator><creator>Costa, Pedro M. F. J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161206</creationdate><title>Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials</title><author>Simoes, Filipa R. F ; Batra, Nitin M ; Warsama, Bashir H ; Canlas, Christian G ; Patole, Shashikant ; Yapici, Tahir F ; Costa, Pedro M. F. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-3ec95ad7a11fc6847febc92c2bf368a1a3ad6e55b462ad79500fd3abcc04d2863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical chemistry</topic><topic>Carbon</topic><topic>Digestion</topic><topic>Disintegration</topic><topic>Efficiency</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Residues</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simoes, Filipa R. F</creatorcontrib><creatorcontrib>Batra, Nitin M</creatorcontrib><creatorcontrib>Warsama, Bashir H</creatorcontrib><creatorcontrib>Canlas, Christian G</creatorcontrib><creatorcontrib>Patole, Shashikant</creatorcontrib><creatorcontrib>Yapici, Tahir F</creatorcontrib><creatorcontrib>Costa, Pedro M. F. J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simoes, Filipa R. F</au><au>Batra, Nitin M</au><au>Warsama, Bashir H</au><au>Canlas, Christian G</au><au>Patole, Shashikant</au><au>Yapici, Tahir F</au><au>Costa, Pedro M. F. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-12-06</date><risdate>2016</risdate><volume>88</volume><issue>23</issue><spage>11783</spage><epage>11790</epage><pages>11783-11790</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a common, relatively low cost, and straightforward analytical technique for the study of trace quantities of metals in solid materials, but its applicability to nanocarbons (e.g., graphene and nanotubes) has suffered from the lack of efficient digestion steps and certified reference materials (CRM). Here, various commercial and certified graphitic carbon materials were subjected to a “two-step” microwave-assisted acid digestion procedure, and the concentrations of up to 18 elements were analyzed by ICP-OES. With one exception (Sm), successful quantification of all certified elements in the two reference nanocarbons studied was achieved, hence validating the sample preparation approach used. The applicability of our “two-step” protocol was further confirmed for a commercial single-walled carbon nanotube sample. However, the digestion was markedly incomplete for all other commercial materials tested. Where possible, the digestion residues of the carbon materials analyzed (CRM included) were characterized to understand the structural changes that take place and how this may explain the challenge of disintegrating graphitic carbon. In this respect, it was found that solid state nuclear magnetic resonance holds considerable promise as a nonlocalized, easily interpretable, and reliable tool to access the efficient disintegration of these materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27779871</pmid><doi>10.1021/acs.analchem.6b03407</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-12, Vol.88 (23), p.11783-11790
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1879984400
source American Chemical Society Journals
subjects Analytical chemistry
Carbon
Digestion
Disintegration
Efficiency
Graphene
Nanostructure
Nanotubes
Residues
Spectrum analysis
title Elemental Quantification and Residues Characterization of Wet Digested Certified and Commercial Carbon Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elemental%20Quantification%20and%20Residues%20Characterization%20of%20Wet%20Digested%20Certified%20and%20Commercial%20Carbon%20Materials&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Simoes,%20Filipa%20R.%20F&rft.date=2016-12-06&rft.volume=88&rft.issue=23&rft.spage=11783&rft.epage=11790&rft.pages=11783-11790&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b03407&rft_dat=%3Cproquest_cross%3E1879984400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848900413&rft_id=info:pmid/27779871&rfr_iscdi=true