Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts

The most efficient method in III° burn treatment is the use of the autologous split thickness skin grafts that were donated from undamaged body area. The main limitation of this method is lack of suitable donor sites. Tissue engineering is a useful tool to solve this problem. The goal of this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-02, Vol.106 (2), p.726-733
Hauptverfasser: Łabuś, Wojciech, Glik, Justyna, Klama-Baryła, Agnieszka, Kitala, Diana, Kraut, Małgorzata, Maj, Mariusz, Nowak, Mariusz, Misiuga, Marcelina, Marcinkowski, Andrzej, Trzebicka, Barbara, Poloczek, Ryszard, Kawecki, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 2
container_start_page 726
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 106
creator Łabuś, Wojciech
Glik, Justyna
Klama-Baryła, Agnieszka
Kitala, Diana
Kraut, Małgorzata
Maj, Mariusz
Nowak, Mariusz
Misiuga, Marcelina
Marcinkowski, Andrzej
Trzebicka, Barbara
Poloczek, Ryszard
Kawecki, Marek
description The most efficient method in III° burn treatment is the use of the autologous split thickness skin grafts that were donated from undamaged body area. The main limitation of this method is lack of suitable donor sites. Tissue engineering is a useful tool to solve this problem. The goal of this study was to find the most efficient way of producing biovital skin substitute based on in house produced acellular dermal matrix ADM and in vitro cultured fibroblasts. Sixty samples of sterilized human allogeneic skin (that came from 10 different donors) were used to examine the influence of decellularizing substances on extracellular matrix and clinical usefulness of the test samples of allogeneic human dermis. Six groups of acellular dermal matrix were studied: ADM-1 control group, ADM-2 research group (24 h incubation in 0.05% trypsin/EDTA solution), ADM-3 research group (24 h incubation in 0.025% trypsin/EDTA solution), ADM-4 research group (24 h incubation in 0.05% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), ADM-5 research group (24 h incubation in 0.025% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), and ADM-6 research group (24 h incubation in 0,1% SDS). Obtained ADMs were examined histochemically and by atomic force microscopy (AFM). ADMs were settled by human fibroblasts. The number of cultured cells and their vitality were measured. The obtained results indicated that the optimal method for production of living skin substitutes is colonization of autologous fibroblasts on the scaffold prepared by the incubation of human allogeneic dermis in 0.05% trypsin/EDTA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 726-733, 2018.
doi_str_mv 10.1002/jbm.b.33883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879664112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879664112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-461f1d70f21a944e9983622fa0ca92ba1c7cb24498e9cd19e5ccb7ff3b2ef9f3</originalsourceid><addsrcrecordid>eNpdkctOHDEQRa0oKBBglT2ylE2kqAe_-uElQoEgIWXD3rLddsaT7vbgB4Lv4UdTkxlYZOWy6tTVrboIfaFkRQlhlxszr8yK82HgH9AJbVvWCDnQj-91z4_R55w3AHek5Z_QMRs4gwF5gl6vSpyDxT4m6zBUKWYbty84LLisHd6mOFZbQlxw9FhjE-JTKHrC-Q8Qv5P2BRud3YiBWNdZL1hbN0110gmPLs2Azrqk8HyQAjIszTrW7LBedh8MgiliW6dSE7T3Kj6YFM2kc8ln6MjrKbvzw3uKHm5-PFz_bO5_3d5dX903lreiNKKjno498YxqKYSTcuAdY14TqyUzmtreGibgNk7akUrXWmt677lhzkvPT9G3vSwYfawuFzWHvNtFLw7sKjr0susEpQzQr_-hm1jTAuYUlYMYiJCkA-r7ntodNSfn1TaFWacXRYnaRacgOmXUv-iAvjhoVjO78Z19y4r_BSx1mDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984804906</pqid></control><display><type>article</type><title>Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Łabuś, Wojciech ; Glik, Justyna ; Klama-Baryła, Agnieszka ; Kitala, Diana ; Kraut, Małgorzata ; Maj, Mariusz ; Nowak, Mariusz ; Misiuga, Marcelina ; Marcinkowski, Andrzej ; Trzebicka, Barbara ; Poloczek, Ryszard ; Kawecki, Marek</creator><creatorcontrib>Łabuś, Wojciech ; Glik, Justyna ; Klama-Baryła, Agnieszka ; Kitala, Diana ; Kraut, Małgorzata ; Maj, Mariusz ; Nowak, Mariusz ; Misiuga, Marcelina ; Marcinkowski, Andrzej ; Trzebicka, Barbara ; Poloczek, Ryszard ; Kawecki, Marek</creatorcontrib><description>The most efficient method in III° burn treatment is the use of the autologous split thickness skin grafts that were donated from undamaged body area. The main limitation of this method is lack of suitable donor sites. Tissue engineering is a useful tool to solve this problem. The goal of this study was to find the most efficient way of producing biovital skin substitute based on in house produced acellular dermal matrix ADM and in vitro cultured fibroblasts. Sixty samples of sterilized human allogeneic skin (that came from 10 different donors) were used to examine the influence of decellularizing substances on extracellular matrix and clinical usefulness of the test samples of allogeneic human dermis. Six groups of acellular dermal matrix were studied: ADM-1 control group, ADM-2 research group (24 h incubation in 0.05% trypsin/EDTA solution), ADM-3 research group (24 h incubation in 0.025% trypsin/EDTA solution), ADM-4 research group (24 h incubation in 0.05% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), ADM-5 research group (24 h incubation in 0.025% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), and ADM-6 research group (24 h incubation in 0,1% SDS). Obtained ADMs were examined histochemically and by atomic force microscopy (AFM). ADMs were settled by human fibroblasts. The number of cultured cells and their vitality were measured. The obtained results indicated that the optimal method for production of living skin substitutes is colonization of autologous fibroblasts on the scaffold prepared by the incubation of human allogeneic dermis in 0.05% trypsin/EDTA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 726-733, 2018.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33883</identifier><identifier>PMID: 28323389</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Atomic properties ; Autografts ; Biomedical materials ; Cells, Cultured ; Colonization ; Dermis ; Edetic acid ; Ethylenediaminetetraacetic acids ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - ultrastructure ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - ultrastructure ; Grafts ; Humans ; Incubation ; Materials research ; Materials science ; Microscopy ; Microscopy, Atomic Force ; Skin ; Skin &amp; tissue grafts ; Skin grafts ; Skin, Artificial ; Substitutes ; Tissue engineering ; Trypsin</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2018-02, Vol.106 (2), p.726-733</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-461f1d70f21a944e9983622fa0ca92ba1c7cb24498e9cd19e5ccb7ff3b2ef9f3</citedby><cites>FETCH-LOGICAL-c354t-461f1d70f21a944e9983622fa0ca92ba1c7cb24498e9cd19e5ccb7ff3b2ef9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28323389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Łabuś, Wojciech</creatorcontrib><creatorcontrib>Glik, Justyna</creatorcontrib><creatorcontrib>Klama-Baryła, Agnieszka</creatorcontrib><creatorcontrib>Kitala, Diana</creatorcontrib><creatorcontrib>Kraut, Małgorzata</creatorcontrib><creatorcontrib>Maj, Mariusz</creatorcontrib><creatorcontrib>Nowak, Mariusz</creatorcontrib><creatorcontrib>Misiuga, Marcelina</creatorcontrib><creatorcontrib>Marcinkowski, Andrzej</creatorcontrib><creatorcontrib>Trzebicka, Barbara</creatorcontrib><creatorcontrib>Poloczek, Ryszard</creatorcontrib><creatorcontrib>Kawecki, Marek</creatorcontrib><title>Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The most efficient method in III° burn treatment is the use of the autologous split thickness skin grafts that were donated from undamaged body area. The main limitation of this method is lack of suitable donor sites. Tissue engineering is a useful tool to solve this problem. The goal of this study was to find the most efficient way of producing biovital skin substitute based on in house produced acellular dermal matrix ADM and in vitro cultured fibroblasts. Sixty samples of sterilized human allogeneic skin (that came from 10 different donors) were used to examine the influence of decellularizing substances on extracellular matrix and clinical usefulness of the test samples of allogeneic human dermis. Six groups of acellular dermal matrix were studied: ADM-1 control group, ADM-2 research group (24 h incubation in 0.05% trypsin/EDTA solution), ADM-3 research group (24 h incubation in 0.025% trypsin/EDTA solution), ADM-4 research group (24 h incubation in 0.05% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), ADM-5 research group (24 h incubation in 0.025% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), and ADM-6 research group (24 h incubation in 0,1% SDS). Obtained ADMs were examined histochemically and by atomic force microscopy (AFM). ADMs were settled by human fibroblasts. The number of cultured cells and their vitality were measured. The obtained results indicated that the optimal method for production of living skin substitutes is colonization of autologous fibroblasts on the scaffold prepared by the incubation of human allogeneic dermis in 0.05% trypsin/EDTA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 726-733, 2018.</description><subject>Atomic force microscopy</subject><subject>Atomic properties</subject><subject>Autografts</subject><subject>Biomedical materials</subject><subject>Cells, Cultured</subject><subject>Colonization</subject><subject>Dermis</subject><subject>Edetic acid</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - ultrastructure</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - ultrastructure</subject><subject>Grafts</subject><subject>Humans</subject><subject>Incubation</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Skin</subject><subject>Skin &amp; tissue grafts</subject><subject>Skin grafts</subject><subject>Skin, Artificial</subject><subject>Substitutes</subject><subject>Tissue engineering</subject><subject>Trypsin</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctOHDEQRa0oKBBglT2ylE2kqAe_-uElQoEgIWXD3rLddsaT7vbgB4Lv4UdTkxlYZOWy6tTVrboIfaFkRQlhlxszr8yK82HgH9AJbVvWCDnQj-91z4_R55w3AHek5Z_QMRs4gwF5gl6vSpyDxT4m6zBUKWYbty84LLisHd6mOFZbQlxw9FhjE-JTKHrC-Q8Qv5P2BRud3YiBWNdZL1hbN0110gmPLs2Azrqk8HyQAjIszTrW7LBedh8MgiliW6dSE7T3Kj6YFM2kc8ln6MjrKbvzw3uKHm5-PFz_bO5_3d5dX903lreiNKKjno498YxqKYSTcuAdY14TqyUzmtreGibgNk7akUrXWmt677lhzkvPT9G3vSwYfawuFzWHvNtFLw7sKjr0susEpQzQr_-hm1jTAuYUlYMYiJCkA-r7ntodNSfn1TaFWacXRYnaRacgOmXUv-iAvjhoVjO78Z19y4r_BSx1mDw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Łabuś, Wojciech</creator><creator>Glik, Justyna</creator><creator>Klama-Baryła, Agnieszka</creator><creator>Kitala, Diana</creator><creator>Kraut, Małgorzata</creator><creator>Maj, Mariusz</creator><creator>Nowak, Mariusz</creator><creator>Misiuga, Marcelina</creator><creator>Marcinkowski, Andrzej</creator><creator>Trzebicka, Barbara</creator><creator>Poloczek, Ryszard</creator><creator>Kawecki, Marek</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180201</creationdate><title>Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts</title><author>Łabuś, Wojciech ; Glik, Justyna ; Klama-Baryła, Agnieszka ; Kitala, Diana ; Kraut, Małgorzata ; Maj, Mariusz ; Nowak, Mariusz ; Misiuga, Marcelina ; Marcinkowski, Andrzej ; Trzebicka, Barbara ; Poloczek, Ryszard ; Kawecki, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-461f1d70f21a944e9983622fa0ca92ba1c7cb24498e9cd19e5ccb7ff3b2ef9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Atomic properties</topic><topic>Autografts</topic><topic>Biomedical materials</topic><topic>Cells, Cultured</topic><topic>Colonization</topic><topic>Dermis</topic><topic>Edetic acid</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - ultrastructure</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - ultrastructure</topic><topic>Grafts</topic><topic>Humans</topic><topic>Incubation</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Skin</topic><topic>Skin &amp; tissue grafts</topic><topic>Skin grafts</topic><topic>Skin, Artificial</topic><topic>Substitutes</topic><topic>Tissue engineering</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łabuś, Wojciech</creatorcontrib><creatorcontrib>Glik, Justyna</creatorcontrib><creatorcontrib>Klama-Baryła, Agnieszka</creatorcontrib><creatorcontrib>Kitala, Diana</creatorcontrib><creatorcontrib>Kraut, Małgorzata</creatorcontrib><creatorcontrib>Maj, Mariusz</creatorcontrib><creatorcontrib>Nowak, Mariusz</creatorcontrib><creatorcontrib>Misiuga, Marcelina</creatorcontrib><creatorcontrib>Marcinkowski, Andrzej</creatorcontrib><creatorcontrib>Trzebicka, Barbara</creatorcontrib><creatorcontrib>Poloczek, Ryszard</creatorcontrib><creatorcontrib>Kawecki, Marek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łabuś, Wojciech</au><au>Glik, Justyna</au><au>Klama-Baryła, Agnieszka</au><au>Kitala, Diana</au><au>Kraut, Małgorzata</au><au>Maj, Mariusz</au><au>Nowak, Mariusz</au><au>Misiuga, Marcelina</au><au>Marcinkowski, Andrzej</au><au>Trzebicka, Barbara</au><au>Poloczek, Ryszard</au><au>Kawecki, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>106</volume><issue>2</issue><spage>726</spage><epage>733</epage><pages>726-733</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The most efficient method in III° burn treatment is the use of the autologous split thickness skin grafts that were donated from undamaged body area. The main limitation of this method is lack of suitable donor sites. Tissue engineering is a useful tool to solve this problem. The goal of this study was to find the most efficient way of producing biovital skin substitute based on in house produced acellular dermal matrix ADM and in vitro cultured fibroblasts. Sixty samples of sterilized human allogeneic skin (that came from 10 different donors) were used to examine the influence of decellularizing substances on extracellular matrix and clinical usefulness of the test samples of allogeneic human dermis. Six groups of acellular dermal matrix were studied: ADM-1 control group, ADM-2 research group (24 h incubation in 0.05% trypsin/EDTA solution), ADM-3 research group (24 h incubation in 0.025% trypsin/EDTA solution), ADM-4 research group (24 h incubation in 0.05% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), ADM-5 research group (24 h incubation in 0.025% trypsin/EDTA solution and 4 h incubation in 0,1% SDS), and ADM-6 research group (24 h incubation in 0,1% SDS). Obtained ADMs were examined histochemically and by atomic force microscopy (AFM). ADMs were settled by human fibroblasts. The number of cultured cells and their vitality were measured. The obtained results indicated that the optimal method for production of living skin substitutes is colonization of autologous fibroblasts on the scaffold prepared by the incubation of human allogeneic dermis in 0.05% trypsin/EDTA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 726-733, 2018.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28323389</pmid><doi>10.1002/jbm.b.33883</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2018-02, Vol.106 (2), p.726-733
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1879664112
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Atomic force microscopy
Atomic properties
Autografts
Biomedical materials
Cells, Cultured
Colonization
Dermis
Edetic acid
Ethylenediaminetetraacetic acids
Extracellular matrix
Extracellular Matrix - chemistry
Extracellular Matrix - ultrastructure
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - ultrastructure
Grafts
Humans
Incubation
Materials research
Materials science
Microscopy
Microscopy, Atomic Force
Skin
Skin & tissue grafts
Skin grafts
Skin, Artificial
Substitutes
Tissue engineering
Trypsin
title Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced in-house and in vitro cultured human fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20force%20microscopy%20in%20the%20production%20of%20a%20biovital%20skin%20graft%20based%20on%20human%20acellular%20dermal%20matrix%20produced%20in-house%20and%20in%20vitro%20cultured%20human%20fibroblasts&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=%C5%81abu%C5%9B,%20Wojciech&rft.date=2018-02-01&rft.volume=106&rft.issue=2&rft.spage=726&rft.epage=733&rft.pages=726-733&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33883&rft_dat=%3Cproquest_cross%3E1879664112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984804906&rft_id=info:pmid/28323389&rfr_iscdi=true