Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation

Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-08, Vol.592, p.197-205
Hauptverfasser: Kizito, Simon, Lv, Tao, Wu, Shubiao, Ajmal, Zeeshan, Luo, Hongzhen, Dong, Renjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrated that CB-CW and WB-CW provide significantly higher removal efficiencies for organic matter (>59%), NH4+-N (>76%), TN (>37%) and phosphorus (>71%), compared with G-CW (22%–49%). The higher pollutants removal ability of biochar-packed VFCWs was mainly attribute to the higher adsorption ability and microbial cultivation in the porous biochar media. Moreover, increasing the flooded/drained ratio from 4/8h to 8/4h of the tidal operation further improved around 10% of the removal of both organics and NH4+-N for biochar-packed VFCWs. The phosphorus removal was dependent on the media adsorption capacities through the whole experiment. However, the NH4+-N biodegradation by microbial communities was demonstrated to become the dominant removal mechanism in the long term treatment, which compensated the decreased adsorption capacities of the media. The study supported that the use of biochar would increase the treatment performance and elongate the lifespan of CWs under tidal operation. [Display omitted] •Biochar-packed VFCWs have better long-term treatment ability than gravel.•The better performance of biochar is attributed to its high sorption capacity.•Tidal operations enhance anaerobic digested effluent treatment lifespan of CWs.•Biochar supports a diverse microbial community compared to gravel in VFCWs.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.03.125