Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model
Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I c). We suggest a mode...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2017-04, Vol.214 (2), p.570-584 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 2 |
container_start_page | 570 |
container_title | The New phytologist |
container_volume | 214 |
creator | Farquhar, Graham D. Busch, Florian A. |
description | Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I
c). We suggest a model that provides a plausible mechanistic explanation of this ‘Kok effect’.
The model uses the mathematical description of photosynthesis developed by Farquhar, von Caemmerer and Berry; it involves no inhibition of respiration rate in the light. We also describe a fitting technique for quantifying the Kok effect at low I.
Changes in the chloroplastic CO2 partial pressure (C
c) can explain curvature of A vs I, its diminution in C4 plants and at low oxygen concentrations or high carbon dioxide concentrations in C3 plants, and effects of dark respiration rate and of temperature. It also explains the apparent inhibition of respiration in the light as inferred by the Laisk approach.
While there are probably other sources of curvature in A vs I, variation in C
c can largely explain the curvature at low irradiance, and suggests that interpretation of day respiration compared with dark respiration of leaves on the basis of the Kok effect needs reassessment. |
doi_str_mv | 10.1111/nph.14512 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879192037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90001987</jstor_id><sourcerecordid>90001987</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2782-29ab2c7833ddd292b64a436031f5a92cfb6cf5162e9ef17bdc417badcf7039253</originalsourceid><addsrcrecordid>eNpdkD9PwzAQxS0EEqUw8AGQLLGwpPWfxI5HFAFFVJQBEJvlODZJSOMQJ0C_PaZFDNxwd9L93tPpAXCK0QyHmrddOcNxgskemOCYiSjFlO-DCUIkjVjMXg7Bkfc1QkgkjEzAc1aq9tV4WLVwKA3UZeN61zXKD5WG2YpA7Vpt2qFXQ-VaaL7CLbDrUZfQ2a3G5d70H6aAd-4NGmuNHo7BgVWNNye_cwqerq8es0W0XN3cZpfLqCY8JRERKieap5QWRUEEyVmsYsoQxTZRgmibM20TzIgRxmKeFzoOXRXackQFSegUXOx8u969j8YPcl15bZpGtcaNXuKUCywIojyg5__Q2o19G76TWMQCCcySH8P5jvqsGrORXV-tVb-RGMmfeGWIV27jlfcPi-0SFGc7Re0H1_8pRIgYi5TTb2NMeDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949091655</pqid></control><display><type>article</type><title>Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Farquhar, Graham D. ; Busch, Florian A.</creator><creatorcontrib>Farquhar, Graham D. ; Busch, Florian A.</creatorcontrib><description>Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I
c). We suggest a model that provides a plausible mechanistic explanation of this ‘Kok effect’.
The model uses the mathematical description of photosynthesis developed by Farquhar, von Caemmerer and Berry; it involves no inhibition of respiration rate in the light. We also describe a fitting technique for quantifying the Kok effect at low I.
Changes in the chloroplastic CO2 partial pressure (C
c) can explain curvature of A vs I, its diminution in C4 plants and at low oxygen concentrations or high carbon dioxide concentrations in C3 plants, and effects of dark respiration rate and of temperature. It also explains the apparent inhibition of respiration in the light as inferred by the Laisk approach.
While there are probably other sources of curvature in A vs I, variation in C
c can largely explain the curvature at low irradiance, and suggests that interpretation of day respiration compared with dark respiration of leaves on the basis of the Kok effect needs reassessment.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14512</identifier><language>eng</language><publisher>Lancaster: New Phytologist Trust</publisher><subject>biochemical photosynthesis model ; Carbon dioxide ; chloroplastic CO2 concentration ; Curvature ; day respiration ; Electron transport ; fitting tool ; Fruits ; Inhibition ; Irradiance ; Kok effect ; Laisk method ; Leaves ; Light ; Mitochondria ; mitochondrial respiration ; Partial pressure ; Photosynthesis ; Respiration</subject><ispartof>The New phytologist, 2017-04, Vol.214 (2), p.570-584</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90001987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90001987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids></links><search><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Busch, Florian A.</creatorcontrib><title>Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model</title><title>The New phytologist</title><description>Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I
c). We suggest a model that provides a plausible mechanistic explanation of this ‘Kok effect’.
The model uses the mathematical description of photosynthesis developed by Farquhar, von Caemmerer and Berry; it involves no inhibition of respiration rate in the light. We also describe a fitting technique for quantifying the Kok effect at low I.
Changes in the chloroplastic CO2 partial pressure (C
c) can explain curvature of A vs I, its diminution in C4 plants and at low oxygen concentrations or high carbon dioxide concentrations in C3 plants, and effects of dark respiration rate and of temperature. It also explains the apparent inhibition of respiration in the light as inferred by the Laisk approach.
While there are probably other sources of curvature in A vs I, variation in C
c can largely explain the curvature at low irradiance, and suggests that interpretation of day respiration compared with dark respiration of leaves on the basis of the Kok effect needs reassessment.</description><subject>biochemical photosynthesis model</subject><subject>Carbon dioxide</subject><subject>chloroplastic CO2 concentration</subject><subject>Curvature</subject><subject>day respiration</subject><subject>Electron transport</subject><subject>fitting tool</subject><subject>Fruits</subject><subject>Inhibition</subject><subject>Irradiance</subject><subject>Kok effect</subject><subject>Laisk method</subject><subject>Leaves</subject><subject>Light</subject><subject>Mitochondria</subject><subject>mitochondrial respiration</subject><subject>Partial pressure</subject><subject>Photosynthesis</subject><subject>Respiration</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkD9PwzAQxS0EEqUw8AGQLLGwpPWfxI5HFAFFVJQBEJvlODZJSOMQJ0C_PaZFDNxwd9L93tPpAXCK0QyHmrddOcNxgskemOCYiSjFlO-DCUIkjVjMXg7Bkfc1QkgkjEzAc1aq9tV4WLVwKA3UZeN61zXKD5WG2YpA7Vpt2qFXQ-VaaL7CLbDrUZfQ2a3G5d70H6aAd-4NGmuNHo7BgVWNNye_cwqerq8es0W0XN3cZpfLqCY8JRERKieap5QWRUEEyVmsYsoQxTZRgmibM20TzIgRxmKeFzoOXRXackQFSegUXOx8u969j8YPcl15bZpGtcaNXuKUCywIojyg5__Q2o19G76TWMQCCcySH8P5jvqsGrORXV-tVb-RGMmfeGWIV27jlfcPi-0SFGc7Re0H1_8pRIgYi5TTb2NMeDU</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Farquhar, Graham D.</creator><creator>Busch, Florian A.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect</title><author>Farquhar, Graham D. ; Busch, Florian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2782-29ab2c7833ddd292b64a436031f5a92cfb6cf5162e9ef17bdc417badcf7039253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biochemical photosynthesis model</topic><topic>Carbon dioxide</topic><topic>chloroplastic CO2 concentration</topic><topic>Curvature</topic><topic>day respiration</topic><topic>Electron transport</topic><topic>fitting tool</topic><topic>Fruits</topic><topic>Inhibition</topic><topic>Irradiance</topic><topic>Kok effect</topic><topic>Laisk method</topic><topic>Leaves</topic><topic>Light</topic><topic>Mitochondria</topic><topic>mitochondrial respiration</topic><topic>Partial pressure</topic><topic>Photosynthesis</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Busch, Florian A.</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farquhar, Graham D.</au><au>Busch, Florian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model</atitle><jtitle>The New phytologist</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>214</volume><issue>2</issue><spage>570</spage><epage>584</epage><pages>570-584</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I
c). We suggest a model that provides a plausible mechanistic explanation of this ‘Kok effect’.
The model uses the mathematical description of photosynthesis developed by Farquhar, von Caemmerer and Berry; it involves no inhibition of respiration rate in the light. We also describe a fitting technique for quantifying the Kok effect at low I.
Changes in the chloroplastic CO2 partial pressure (C
c) can explain curvature of A vs I, its diminution in C4 plants and at low oxygen concentrations or high carbon dioxide concentrations in C3 plants, and effects of dark respiration rate and of temperature. It also explains the apparent inhibition of respiration in the light as inferred by the Laisk approach.
While there are probably other sources of curvature in A vs I, variation in C
c can largely explain the curvature at low irradiance, and suggests that interpretation of day respiration compared with dark respiration of leaves on the basis of the Kok effect needs reassessment.</abstract><cop>Lancaster</cop><pub>New Phytologist Trust</pub><doi>10.1111/nph.14512</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2017-04, Vol.214 (2), p.570-584 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879192037 |
source | Wiley Online Library Free Content; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | biochemical photosynthesis model Carbon dioxide chloroplastic CO2 concentration Curvature day respiration Electron transport fitting tool Fruits Inhibition Irradiance Kok effect Laisk method Leaves Light Mitochondria mitochondrial respiration Partial pressure Photosynthesis Respiration |
title | Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20the%20chloroplastic%20CO2%20concentration%20explain%20much%20of%20the%20observed%20Kok%20effect:%20a%20model&rft.jtitle=The%20New%20phytologist&rft.au=Farquhar,%20Graham%20D.&rft.date=2017-04-01&rft.volume=214&rft.issue=2&rft.spage=570&rft.epage=584&rft.pages=570-584&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14512&rft_dat=%3Cjstor_proqu%3E90001987%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949091655&rft_id=info:pmid/&rft_jstor_id=90001987&rfr_iscdi=true |