Evolutionary ecology of beta‐lactam gene clusters in animals

Beta‐lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil‐dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta‐lactam biosynthesis pathway and how wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2017-06, Vol.26 (12), p.3217-3229
Hauptverfasser: Suring, Wouter, Meusemann, Karen, Blanke, Alexander, Mariën, Janine, Schol, Tim, Agamennone, Valeria, Faddeeva‐Vakhrusheva, Anna, Berg, Matty P., Brouwer, Abraham, Straalen, Nico M., Roelofs, Dick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3229
container_issue 12
container_start_page 3217
container_title Molecular ecology
container_volume 26
creator Suring, Wouter
Meusemann, Karen
Blanke, Alexander
Mariën, Janine
Schol, Tim
Agamennone, Valeria
Faddeeva‐Vakhrusheva, Anna
Berg, Matty P.
Brouwer, Abraham
Straalen, Nico M.
Roelofs, Dick
description Beta‐lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil‐dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta‐lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta‐lactam biosynthesis genes throughout the animal kingdom and identified a beta‐lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ‐(L‐α‐aminoadipoyl)‐L‐cysteinyl‐D‐valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta‐lactam compound was detected in vivo using an ELISA beta‐lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta‐lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome‐ and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta‐lactam genes is strongly correlated with an euedaphic (soil‐living) lifestyle. Beta‐lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.
doi_str_mv 10.1111/mec.14109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879191977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906219289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-cef37aa140d8abf59a1abf48c8d53ebb7d638b931ace0da514211198a96ffea53</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRbK0ufAEJuNFF2rmZ_MxsBCn1BypuFNwNk8lNSUkyNZMo2fkIPqNP4miqC8F7F2fzcTjnEHIMdAruZhXqKYRAxQ4ZA4sjPxDh0y4ZUxEHPlDORuTA2jWlwIIo2iejgDOIIQzG5GLxYsquLUytmt5DbUqz6j2Teym26uPtvVS6VZW3who9XXa2xcZ6Re2puqhUaQ_JXu4Ej7Y6IY9Xi4f5jb-8v76dXy59zTgXvsacJUpBSDOu0jwSCpyEXPMsYpimSRYzngoGSiPNVOSiuV6CKxHnOaqITcjZ4LtpzHOHtpVVYTWWparRdFYCTwS4TxKHnv5B16ZrapdOgqBxACLgwlHnA6UbY22Dudw0rlHTS6Dya1TpRpXfozr2ZOvYpRVmv-TPig6YDcBrUWL_v5O8W8wHy09nEIEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906219289</pqid></control><display><type>article</type><title>Evolutionary ecology of beta‐lactam gene clusters in animals</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suring, Wouter ; Meusemann, Karen ; Blanke, Alexander ; Mariën, Janine ; Schol, Tim ; Agamennone, Valeria ; Faddeeva‐Vakhrusheva, Anna ; Berg, Matty P. ; Brouwer, Abraham ; Straalen, Nico M. ; Roelofs, Dick</creator><creatorcontrib>Suring, Wouter ; Meusemann, Karen ; Blanke, Alexander ; Mariën, Janine ; Schol, Tim ; Agamennone, Valeria ; Faddeeva‐Vakhrusheva, Anna ; Berg, Matty P. ; Brouwer, Abraham ; Straalen, Nico M. ; Roelofs, Dick ; 1KITE Basal Hexapod consortium ; the 1KITE Basal Hexapod consortium</creatorcontrib><description>Beta‐lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil‐dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta‐lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta‐lactam biosynthesis genes throughout the animal kingdom and identified a beta‐lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ‐(L‐α‐aminoadipoyl)‐L‐cysteinyl‐D‐valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta‐lactam compound was detected in vivo using an ELISA beta‐lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta‐lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome‐ and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta‐lactam genes is strongly correlated with an euedaphic (soil‐living) lifestyle. Beta‐lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14109</identifier><identifier>PMID: 28316142</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ABC transporter ; Amides ; Animals ; antibiotic biosynthesis ; Aquatic insects ; Arthropod Proteins - genetics ; Arthropods - enzymology ; Arthropods - genetics ; Assaying ; Bacteria ; beta-Lactams ; Biological evolution ; Biosynthesis ; Cephamycins ; Collembola ; Correlation ; Ecology ; Enzyme-linked immunosorbent assay ; Evolution ; Folsomia candida ; Fungi ; Gene clusters ; gene expression ; Gene transfer ; Genes ; Genomes ; Heat shock ; horizontal gene transfer ; Isopenicillin N synthase ; Multigene Family ; Oxidoreductases - genetics ; Penicillin ; Peptide Synthases - genetics ; Phylogeny ; Soils ; Valine ; β-Lactam antibiotics</subject><ispartof>Molecular ecology, 2017-06, Vol.26 (12), p.3217-3229</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-cef37aa140d8abf59a1abf48c8d53ebb7d638b931ace0da514211198a96ffea53</citedby><cites>FETCH-LOGICAL-c3889-cef37aa140d8abf59a1abf48c8d53ebb7d638b931ace0da514211198a96ffea53</cites><orcidid>0000-0003-3954-3590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28316142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suring, Wouter</creatorcontrib><creatorcontrib>Meusemann, Karen</creatorcontrib><creatorcontrib>Blanke, Alexander</creatorcontrib><creatorcontrib>Mariën, Janine</creatorcontrib><creatorcontrib>Schol, Tim</creatorcontrib><creatorcontrib>Agamennone, Valeria</creatorcontrib><creatorcontrib>Faddeeva‐Vakhrusheva, Anna</creatorcontrib><creatorcontrib>Berg, Matty P.</creatorcontrib><creatorcontrib>Brouwer, Abraham</creatorcontrib><creatorcontrib>Straalen, Nico M.</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>1KITE Basal Hexapod consortium</creatorcontrib><creatorcontrib>the 1KITE Basal Hexapod consortium</creatorcontrib><title>Evolutionary ecology of beta‐lactam gene clusters in animals</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Beta‐lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil‐dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta‐lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta‐lactam biosynthesis genes throughout the animal kingdom and identified a beta‐lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ‐(L‐α‐aminoadipoyl)‐L‐cysteinyl‐D‐valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta‐lactam compound was detected in vivo using an ELISA beta‐lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta‐lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome‐ and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta‐lactam genes is strongly correlated with an euedaphic (soil‐living) lifestyle. Beta‐lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.</description><subject>ABC transporter</subject><subject>Amides</subject><subject>Animals</subject><subject>antibiotic biosynthesis</subject><subject>Aquatic insects</subject><subject>Arthropod Proteins - genetics</subject><subject>Arthropods - enzymology</subject><subject>Arthropods - genetics</subject><subject>Assaying</subject><subject>Bacteria</subject><subject>beta-Lactams</subject><subject>Biological evolution</subject><subject>Biosynthesis</subject><subject>Cephamycins</subject><subject>Collembola</subject><subject>Correlation</subject><subject>Ecology</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Evolution</subject><subject>Folsomia candida</subject><subject>Fungi</subject><subject>Gene clusters</subject><subject>gene expression</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genomes</subject><subject>Heat shock</subject><subject>horizontal gene transfer</subject><subject>Isopenicillin N synthase</subject><subject>Multigene Family</subject><subject>Oxidoreductases - genetics</subject><subject>Penicillin</subject><subject>Peptide Synthases - genetics</subject><subject>Phylogeny</subject><subject>Soils</subject><subject>Valine</subject><subject>β-Lactam antibiotics</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1Kw0AUhQdRbK0ufAEJuNFF2rmZ_MxsBCn1BypuFNwNk8lNSUkyNZMo2fkIPqNP4miqC8F7F2fzcTjnEHIMdAruZhXqKYRAxQ4ZA4sjPxDh0y4ZUxEHPlDORuTA2jWlwIIo2iejgDOIIQzG5GLxYsquLUytmt5DbUqz6j2Teym26uPtvVS6VZW3who9XXa2xcZ6Re2puqhUaQ_JXu4Ej7Y6IY9Xi4f5jb-8v76dXy59zTgXvsacJUpBSDOu0jwSCpyEXPMsYpimSRYzngoGSiPNVOSiuV6CKxHnOaqITcjZ4LtpzHOHtpVVYTWWparRdFYCTwS4TxKHnv5B16ZrapdOgqBxACLgwlHnA6UbY22Dudw0rlHTS6Dya1TpRpXfozr2ZOvYpRVmv-TPig6YDcBrUWL_v5O8W8wHy09nEIEc</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Suring, Wouter</creator><creator>Meusemann, Karen</creator><creator>Blanke, Alexander</creator><creator>Mariën, Janine</creator><creator>Schol, Tim</creator><creator>Agamennone, Valeria</creator><creator>Faddeeva‐Vakhrusheva, Anna</creator><creator>Berg, Matty P.</creator><creator>Brouwer, Abraham</creator><creator>Straalen, Nico M.</creator><creator>Roelofs, Dick</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3954-3590</orcidid></search><sort><creationdate>201706</creationdate><title>Evolutionary ecology of beta‐lactam gene clusters in animals</title><author>Suring, Wouter ; Meusemann, Karen ; Blanke, Alexander ; Mariën, Janine ; Schol, Tim ; Agamennone, Valeria ; Faddeeva‐Vakhrusheva, Anna ; Berg, Matty P. ; Brouwer, Abraham ; Straalen, Nico M. ; Roelofs, Dick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-cef37aa140d8abf59a1abf48c8d53ebb7d638b931ace0da514211198a96ffea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ABC transporter</topic><topic>Amides</topic><topic>Animals</topic><topic>antibiotic biosynthesis</topic><topic>Aquatic insects</topic><topic>Arthropod Proteins - genetics</topic><topic>Arthropods - enzymology</topic><topic>Arthropods - genetics</topic><topic>Assaying</topic><topic>Bacteria</topic><topic>beta-Lactams</topic><topic>Biological evolution</topic><topic>Biosynthesis</topic><topic>Cephamycins</topic><topic>Collembola</topic><topic>Correlation</topic><topic>Ecology</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Evolution</topic><topic>Folsomia candida</topic><topic>Fungi</topic><topic>Gene clusters</topic><topic>gene expression</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genomes</topic><topic>Heat shock</topic><topic>horizontal gene transfer</topic><topic>Isopenicillin N synthase</topic><topic>Multigene Family</topic><topic>Oxidoreductases - genetics</topic><topic>Penicillin</topic><topic>Peptide Synthases - genetics</topic><topic>Phylogeny</topic><topic>Soils</topic><topic>Valine</topic><topic>β-Lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suring, Wouter</creatorcontrib><creatorcontrib>Meusemann, Karen</creatorcontrib><creatorcontrib>Blanke, Alexander</creatorcontrib><creatorcontrib>Mariën, Janine</creatorcontrib><creatorcontrib>Schol, Tim</creatorcontrib><creatorcontrib>Agamennone, Valeria</creatorcontrib><creatorcontrib>Faddeeva‐Vakhrusheva, Anna</creatorcontrib><creatorcontrib>Berg, Matty P.</creatorcontrib><creatorcontrib>Brouwer, Abraham</creatorcontrib><creatorcontrib>Straalen, Nico M.</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>1KITE Basal Hexapod consortium</creatorcontrib><creatorcontrib>the 1KITE Basal Hexapod consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suring, Wouter</au><au>Meusemann, Karen</au><au>Blanke, Alexander</au><au>Mariën, Janine</au><au>Schol, Tim</au><au>Agamennone, Valeria</au><au>Faddeeva‐Vakhrusheva, Anna</au><au>Berg, Matty P.</au><au>Brouwer, Abraham</au><au>Straalen, Nico M.</au><au>Roelofs, Dick</au><aucorp>1KITE Basal Hexapod consortium</aucorp><aucorp>the 1KITE Basal Hexapod consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary ecology of beta‐lactam gene clusters in animals</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>26</volume><issue>12</issue><spage>3217</spage><epage>3229</epage><pages>3217-3229</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Beta‐lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil‐dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta‐lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta‐lactam biosynthesis genes throughout the animal kingdom and identified a beta‐lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ‐(L‐α‐aminoadipoyl)‐L‐cysteinyl‐D‐valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta‐lactam compound was detected in vivo using an ELISA beta‐lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta‐lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome‐ and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta‐lactam genes is strongly correlated with an euedaphic (soil‐living) lifestyle. Beta‐lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28316142</pmid><doi>10.1111/mec.14109</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3954-3590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2017-06, Vol.26 (12), p.3217-3229
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1879191977
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects ABC transporter
Amides
Animals
antibiotic biosynthesis
Aquatic insects
Arthropod Proteins - genetics
Arthropods - enzymology
Arthropods - genetics
Assaying
Bacteria
beta-Lactams
Biological evolution
Biosynthesis
Cephamycins
Collembola
Correlation
Ecology
Enzyme-linked immunosorbent assay
Evolution
Folsomia candida
Fungi
Gene clusters
gene expression
Gene transfer
Genes
Genomes
Heat shock
horizontal gene transfer
Isopenicillin N synthase
Multigene Family
Oxidoreductases - genetics
Penicillin
Peptide Synthases - genetics
Phylogeny
Soils
Valine
β-Lactam antibiotics
title Evolutionary ecology of beta‐lactam gene clusters in animals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20ecology%20of%20beta%E2%80%90lactam%20gene%20clusters%20in%20animals&rft.jtitle=Molecular%20ecology&rft.au=Suring,%20Wouter&rft.aucorp=1KITE%20Basal%20Hexapod%20consortium&rft.date=2017-06&rft.volume=26&rft.issue=12&rft.spage=3217&rft.epage=3229&rft.pages=3217-3229&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14109&rft_dat=%3Cproquest_cross%3E1906219289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906219289&rft_id=info:pmid/28316142&rfr_iscdi=true