MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries

A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-06, Vol.29 (21), p.n/a
Hauptverfasser: Ghazi, Zahid Ali, He, Xiao, Khattak, Abdul Muqsit, Khan, Niaz Ali, Liang, Bin, Iqbal, Azhar, Wang, Jinxin, Sin, Haksong, Li, Lianshan, Tang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Ghazi, Zahid Ali
He, Xiao
Khattak, Abdul Muqsit
Khan, Niaz Ali
Liang, Bin
Iqbal, Azhar
Wang, Jinxin
Sin, Haksong
Li, Lianshan
Tang, Zhiyong
description A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.
doi_str_mv 10.1002/adma.201606817
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879190913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879190913</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023</originalsourceid><addsrcrecordid>eNpd0M1KAzEQB_AgCtbq1fOCFy_bTpJNdnOstX7AFoXqOWS7SU3Z7tZkF-mtjyD4hn0SUyo9eBpm-DHM_BG6xjDAAGSoypUaEMAceIbTE9TDjOA4AcFOUQ8EZbHgSXaOLrxfAoAIroeKaTMjw7GuFsqV0UyvlVNt4yLlo4kxdm513UavTbXxXWVsqaM75ZzVLjIB5U292G2_c2t0lNv2w3ar3fZnFmTnAmxbHai_RGdGVV5f_dU-en-YvI2f4vzl8Xk8yuMF5SKNs0wUqYGSa8pVURo2ByZKU9C0KKnJCgJZeIJjTsM0xUSHz1KSkAITijUQ2ke3h71r13x22rdyZf1cV5WqddN5ibNUYAEC00Bv_tFl07k6XCexIJBgxhkLShzUl630Rq6dXSm3kRjkPm-5z1se85aj--no2NFfrbh3Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920415655</pqid></control><display><type>article</type><title>MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghazi, Zahid Ali ; He, Xiao ; Khattak, Abdul Muqsit ; Khan, Niaz Ali ; Liang, Bin ; Iqbal, Azhar ; Wang, Jinxin ; Sin, Haksong ; Li, Lianshan ; Tang, Zhiyong</creator><creatorcontrib>Ghazi, Zahid Ali ; He, Xiao ; Khattak, Abdul Muqsit ; Khan, Niaz Ali ; Liang, Bin ; Iqbal, Azhar ; Wang, Jinxin ; Sin, Haksong ; Li, Lianshan ; Tang, Zhiyong</creatorcontrib><description>A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201606817</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; composite membranes ; Decay rate ; Diffusion rate ; Energy storage ; Graphene ; Lithium ; Lithium batteries ; Lithium ions ; Lithium sulfur batteries ; Materials science ; Migration ; Molybdenum disulfide ; Polysulfides ; Separators ; shuttle effect ; Sulfur</subject><ispartof>Advanced materials (Weinheim), 2017-06, Vol.29 (21), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201606817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201606817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ghazi, Zahid Ali</creatorcontrib><creatorcontrib>He, Xiao</creatorcontrib><creatorcontrib>Khattak, Abdul Muqsit</creatorcontrib><creatorcontrib>Khan, Niaz Ali</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Iqbal, Azhar</creatorcontrib><creatorcontrib>Wang, Jinxin</creatorcontrib><creatorcontrib>Sin, Haksong</creatorcontrib><creatorcontrib>Li, Lianshan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><title>MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries</title><title>Advanced materials (Weinheim)</title><description>A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.</description><subject>Anodes</subject><subject>Batteries</subject><subject>composite membranes</subject><subject>Decay rate</subject><subject>Diffusion rate</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ions</subject><subject>Lithium sulfur batteries</subject><subject>Materials science</subject><subject>Migration</subject><subject>Molybdenum disulfide</subject><subject>Polysulfides</subject><subject>Separators</subject><subject>shuttle effect</subject><subject>Sulfur</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0M1KAzEQB_AgCtbq1fOCFy_bTpJNdnOstX7AFoXqOWS7SU3Z7tZkF-mtjyD4hn0SUyo9eBpm-DHM_BG6xjDAAGSoypUaEMAceIbTE9TDjOA4AcFOUQ8EZbHgSXaOLrxfAoAIroeKaTMjw7GuFsqV0UyvlVNt4yLlo4kxdm513UavTbXxXWVsqaM75ZzVLjIB5U292G2_c2t0lNv2w3ar3fZnFmTnAmxbHai_RGdGVV5f_dU-en-YvI2f4vzl8Xk8yuMF5SKNs0wUqYGSa8pVURo2ByZKU9C0KKnJCgJZeIJjTsM0xUSHz1KSkAITijUQ2ke3h71r13x22rdyZf1cV5WqddN5ibNUYAEC00Bv_tFl07k6XCexIJBgxhkLShzUl630Rq6dXSm3kRjkPm-5z1se85aj--no2NFfrbh3Nw</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Ghazi, Zahid Ali</creator><creator>He, Xiao</creator><creator>Khattak, Abdul Muqsit</creator><creator>Khan, Niaz Ali</creator><creator>Liang, Bin</creator><creator>Iqbal, Azhar</creator><creator>Wang, Jinxin</creator><creator>Sin, Haksong</creator><creator>Li, Lianshan</creator><creator>Tang, Zhiyong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20170606</creationdate><title>MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries</title><author>Ghazi, Zahid Ali ; He, Xiao ; Khattak, Abdul Muqsit ; Khan, Niaz Ali ; Liang, Bin ; Iqbal, Azhar ; Wang, Jinxin ; Sin, Haksong ; Li, Lianshan ; Tang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3697-889b7f0d6e36abdf5c059dfb37bd3f8b20809361639df712e4097242b1231e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>composite membranes</topic><topic>Decay rate</topic><topic>Diffusion rate</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ions</topic><topic>Lithium sulfur batteries</topic><topic>Materials science</topic><topic>Migration</topic><topic>Molybdenum disulfide</topic><topic>Polysulfides</topic><topic>Separators</topic><topic>shuttle effect</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazi, Zahid Ali</creatorcontrib><creatorcontrib>He, Xiao</creatorcontrib><creatorcontrib>Khattak, Abdul Muqsit</creatorcontrib><creatorcontrib>Khan, Niaz Ali</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Iqbal, Azhar</creatorcontrib><creatorcontrib>Wang, Jinxin</creatorcontrib><creatorcontrib>Sin, Haksong</creatorcontrib><creatorcontrib>Li, Lianshan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazi, Zahid Ali</au><au>He, Xiao</au><au>Khattak, Abdul Muqsit</au><au>Khan, Niaz Ali</au><au>Liang, Bin</au><au>Iqbal, Azhar</au><au>Wang, Jinxin</au><au>Sin, Haksong</au><au>Li, Lianshan</au><au>Tang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2017-06-06</date><risdate>2017</risdate><volume>29</volume><issue>21</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g−1 and a substantial capacity of 401 mAh g−1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices. A MoS2/Celgard separator is demonstrated to greatly improve cycle stability and Coulombic efficiency when used as separator in Li–S batteries, due to the high lithium conductivity and the stacked structure, which not only acts as ion sieves to block polysulfides, but also provides free spaces to accommodate various polysulfide intermediates via physiochemical interaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201606817</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-06, Vol.29 (21), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1879190913
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Batteries
composite membranes
Decay rate
Diffusion rate
Energy storage
Graphene
Lithium
Lithium batteries
Lithium ions
Lithium sulfur batteries
Materials science
Migration
Molybdenum disulfide
Polysulfides
Separators
shuttle effect
Sulfur
title MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2/Celgard%20Separator%20as%20Efficient%20Polysulfide%20Barrier%20for%20Long%E2%80%90Life%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ghazi,%20Zahid%20Ali&rft.date=2017-06-06&rft.volume=29&rft.issue=21&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201606817&rft_dat=%3Cproquest_wiley%3E1879190913%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920415655&rft_id=info:pmid/&rfr_iscdi=true