Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage

An eco‐efficient synthetic route for the preparation of high‐performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2) as the precursor, which has gas‐like diffusivity, extremely low viscosity, and near‐zero surface tension, CoCO3 particles are uniformly for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-06, Vol.10 (11), p.2464-2472
Hauptverfasser: Li, Hui‐Ying, Tseng, Chuan‐Ming, Yang, Cheng‐Hsien, Lee, Tai‐Chou, Su, Ching‐Yuan, Hsieh, Chien‐Te, Chang, Jeng‐Kuei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2472
container_issue 11
container_start_page 2464
container_title ChemSusChem
container_volume 10
creator Li, Hui‐Ying
Tseng, Chuan‐Ming
Yang, Cheng‐Hsien
Lee, Tai‐Chou
Su, Ching‐Yuan
Hsieh, Chien‐Te
Chang, Jeng‐Kuei
description An eco‐efficient synthetic route for the preparation of high‐performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2) as the precursor, which has gas‐like diffusivity, extremely low viscosity, and near‐zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (ca. 20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g−1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it can deliver 745 mAh g−1 in 7.5 min. More than 98 % of the initial capacity is retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3‐based electrodes for Li+ storage, indicating the merit of our scCO2‐based synthesis, which is facile, green, and can be easily scaled up for mass production. I should CoCO3: An eco‐efficient synthetic route is used for the synthesis of metal carbonates for Li+ and Na+ battery applications by using supercritical CO2 as a green precursor at 50 °C. The method minimizes energy consumption and has a low environmental footprint. The obtained CoCO3/graphene composites with a unique architecture show excellent properties for reversible Li+ and Na+ storage.
doi_str_mv 10.1002/cssc.201700171
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879190581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879190581</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3031-d3066e0fe1fbf6ce5e0343588a941b9a758a125962d0c6ded9b15b2f19df0e033</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4MoOKdXzwEvgnQmTZM2x1GmE4YTquAtpGmyZXTNTFqkNz-Cn9FPYsdkBw-P9_7w4_HeD4BrjCYYofhehaAmMcIpGgqfgBHOWBJRlryfHmeCz8FFCBuEGOKMjYCZKffz9T0zxiqrmxYWfdOudbABOgPndrWue_jivOsCzF2-JHDauEoHaLzbwqLbaa-8ba2SNcyXMTTOw4W9g7Kp4LO8g0XrvFzpS3BmZB301V8fg7eH2Ws-jxbLx6d8uohWBBEcVQQxppHR2JSGKU01IgmhWSZ5gksuU5pJHFPO4gopVumKl5iWscG8MmhgyRjcHvbuvPvodGjF1gal61o2enhB4CzlmCOa4QG9-YduXOeb4ToxEGkcU8KTgeIH6tPWuhc7b7fS9wIjsXcu9s7F0bnIiyI_JvIL8uN24g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907225394</pqid></control><display><type>article</type><title>Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage</title><source>Wiley-Blackwell Journals</source><creator>Li, Hui‐Ying ; Tseng, Chuan‐Ming ; Yang, Cheng‐Hsien ; Lee, Tai‐Chou ; Su, Ching‐Yuan ; Hsieh, Chien‐Te ; Chang, Jeng‐Kuei</creator><creatorcontrib>Li, Hui‐Ying ; Tseng, Chuan‐Ming ; Yang, Cheng‐Hsien ; Lee, Tai‐Chou ; Su, Ching‐Yuan ; Hsieh, Chien‐Te ; Chang, Jeng‐Kuei</creatorcontrib><description>An eco‐efficient synthetic route for the preparation of high‐performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2) as the precursor, which has gas‐like diffusivity, extremely low viscosity, and near‐zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (ca. 20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g−1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it can deliver 745 mAh g−1 in 7.5 min. More than 98 % of the initial capacity is retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3‐based electrodes for Li+ storage, indicating the merit of our scCO2‐based synthesis, which is facile, green, and can be easily scaled up for mass production. I should CoCO3: An eco‐efficient synthetic route is used for the synthesis of metal carbonates for Li+ and Na+ battery applications by using supercritical CO2 as a green precursor at 50 °C. The method minimizes energy consumption and has a low environmental footprint. The obtained CoCO3/graphene composites with a unique architecture show excellent properties for reversible Li+ and Na+ storage.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201700171</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; Anodes ; Batteries ; Carbon dioxide ; Charging ; cobalt ; Diffusion length ; Diffusivity ; Discharge ; Electrodes ; Energy consumption ; energy storage ; Global navigation satellite system ; Graphene ; green chemistry ; Ion diffusion ; Mass production ; Nanostructure ; Scaling up ; supercritical fluids ; Surface tension ; Viscosity</subject><ispartof>ChemSusChem, 2017-06, Vol.10 (11), p.2464-2472</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201700171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201700171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Hui‐Ying</creatorcontrib><creatorcontrib>Tseng, Chuan‐Ming</creatorcontrib><creatorcontrib>Yang, Cheng‐Hsien</creatorcontrib><creatorcontrib>Lee, Tai‐Chou</creatorcontrib><creatorcontrib>Su, Ching‐Yuan</creatorcontrib><creatorcontrib>Hsieh, Chien‐Te</creatorcontrib><creatorcontrib>Chang, Jeng‐Kuei</creatorcontrib><title>Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage</title><title>ChemSusChem</title><description>An eco‐efficient synthetic route for the preparation of high‐performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2) as the precursor, which has gas‐like diffusivity, extremely low viscosity, and near‐zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (ca. 20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g−1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it can deliver 745 mAh g−1 in 7.5 min. More than 98 % of the initial capacity is retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3‐based electrodes for Li+ storage, indicating the merit of our scCO2‐based synthesis, which is facile, green, and can be easily scaled up for mass production. I should CoCO3: An eco‐efficient synthetic route is used for the synthesis of metal carbonates for Li+ and Na+ battery applications by using supercritical CO2 as a green precursor at 50 °C. The method minimizes energy consumption and has a low environmental footprint. The obtained CoCO3/graphene composites with a unique architecture show excellent properties for reversible Li+ and Na+ storage.</description><subject>Accessibility</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon dioxide</subject><subject>Charging</subject><subject>cobalt</subject><subject>Diffusion length</subject><subject>Diffusivity</subject><subject>Discharge</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>energy storage</subject><subject>Global navigation satellite system</subject><subject>Graphene</subject><subject>green chemistry</subject><subject>Ion diffusion</subject><subject>Mass production</subject><subject>Nanostructure</subject><subject>Scaling up</subject><subject>supercritical fluids</subject><subject>Surface tension</subject><subject>Viscosity</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAUx4MoOKdXzwEvgnQmTZM2x1GmE4YTquAtpGmyZXTNTFqkNz-Cn9FPYsdkBw-P9_7w4_HeD4BrjCYYofhehaAmMcIpGgqfgBHOWBJRlryfHmeCz8FFCBuEGOKMjYCZKffz9T0zxiqrmxYWfdOudbABOgPndrWue_jivOsCzF2-JHDauEoHaLzbwqLbaa-8ba2SNcyXMTTOw4W9g7Kp4LO8g0XrvFzpS3BmZB301V8fg7eH2Ws-jxbLx6d8uohWBBEcVQQxppHR2JSGKU01IgmhWSZ5gksuU5pJHFPO4gopVumKl5iWscG8MmhgyRjcHvbuvPvodGjF1gal61o2enhB4CzlmCOa4QG9-YduXOeb4ToxEGkcU8KTgeIH6tPWuhc7b7fS9wIjsXcu9s7F0bnIiyI_JvIL8uN24g</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Li, Hui‐Ying</creator><creator>Tseng, Chuan‐Ming</creator><creator>Yang, Cheng‐Hsien</creator><creator>Lee, Tai‐Chou</creator><creator>Su, Ching‐Yuan</creator><creator>Hsieh, Chien‐Te</creator><creator>Chang, Jeng‐Kuei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20170609</creationdate><title>Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage</title><author>Li, Hui‐Ying ; Tseng, Chuan‐Ming ; Yang, Cheng‐Hsien ; Lee, Tai‐Chou ; Su, Ching‐Yuan ; Hsieh, Chien‐Te ; Chang, Jeng‐Kuei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3031-d3066e0fe1fbf6ce5e0343588a941b9a758a125962d0c6ded9b15b2f19df0e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accessibility</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon dioxide</topic><topic>Charging</topic><topic>cobalt</topic><topic>Diffusion length</topic><topic>Diffusivity</topic><topic>Discharge</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>energy storage</topic><topic>Global navigation satellite system</topic><topic>Graphene</topic><topic>green chemistry</topic><topic>Ion diffusion</topic><topic>Mass production</topic><topic>Nanostructure</topic><topic>Scaling up</topic><topic>supercritical fluids</topic><topic>Surface tension</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui‐Ying</creatorcontrib><creatorcontrib>Tseng, Chuan‐Ming</creatorcontrib><creatorcontrib>Yang, Cheng‐Hsien</creatorcontrib><creatorcontrib>Lee, Tai‐Chou</creatorcontrib><creatorcontrib>Su, Ching‐Yuan</creatorcontrib><creatorcontrib>Hsieh, Chien‐Te</creatorcontrib><creatorcontrib>Chang, Jeng‐Kuei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui‐Ying</au><au>Tseng, Chuan‐Ming</au><au>Yang, Cheng‐Hsien</au><au>Lee, Tai‐Chou</au><au>Su, Ching‐Yuan</au><au>Hsieh, Chien‐Te</au><au>Chang, Jeng‐Kuei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage</atitle><jtitle>ChemSusChem</jtitle><date>2017-06-09</date><risdate>2017</risdate><volume>10</volume><issue>11</issue><spage>2464</spage><epage>2472</epage><pages>2464-2472</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>An eco‐efficient synthetic route for the preparation of high‐performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2) as the precursor, which has gas‐like diffusivity, extremely low viscosity, and near‐zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (ca. 20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g−1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it can deliver 745 mAh g−1 in 7.5 min. More than 98 % of the initial capacity is retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3‐based electrodes for Li+ storage, indicating the merit of our scCO2‐based synthesis, which is facile, green, and can be easily scaled up for mass production. I should CoCO3: An eco‐efficient synthetic route is used for the synthesis of metal carbonates for Li+ and Na+ battery applications by using supercritical CO2 as a green precursor at 50 °C. The method minimizes energy consumption and has a low environmental footprint. The obtained CoCO3/graphene composites with a unique architecture show excellent properties for reversible Li+ and Na+ storage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.201700171</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-06, Vol.10 (11), p.2464-2472
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1879190581
source Wiley-Blackwell Journals
subjects Accessibility
Anodes
Batteries
Carbon dioxide
Charging
cobalt
Diffusion length
Diffusivity
Discharge
Electrodes
Energy consumption
energy storage
Global navigation satellite system
Graphene
green chemistry
Ion diffusion
Mass production
Nanostructure
Scaling up
supercritical fluids
Surface tension
Viscosity
title Eco‐Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco%E2%80%90Efficient%20Synthesis%20of%20Highly%20Porous%20CoCO3%20Anodes%20from%20Supercritical%20CO2%20for%20Li+%20and%20Na+%20Storage&rft.jtitle=ChemSusChem&rft.au=Li,%20Hui%E2%80%90Ying&rft.date=2017-06-09&rft.volume=10&rft.issue=11&rft.spage=2464&rft.epage=2472&rft.pages=2464-2472&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201700171&rft_dat=%3Cproquest_wiley%3E1879190581%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907225394&rft_id=info:pmid/&rfr_iscdi=true