Estimating Population Size with Correlated Sampling Unit Estimates
Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance e...
Gespeichert in:
Veröffentlicht in: | The Journal of wildlife management 2003-01, Vol.67 (1), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Journal of wildlife management |
container_volume | 67 |
creator | Bowden, David C. White, Gary C. Franklin, Alan B. Ganey, Joseph L. |
description | Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark-recapture or distance sampling methods occur when data are pooled across quadrats to estimate, for example, capture probability parameters or sighting functions. When only minimal information is available from each quadrat, pooling of data across quadrats may be necessary to efficiently estimate capture probabilities or sighting functions. We further include information from a quadrat-based auxiliary variable to more precisely estimate total population size via a ratio estimator. We also provide variance estimators for the difference between or the ratio of 2 abundance estimates, taken at different times. We present an example based on estimating the number of Mexican spotted owls (Strix occidentalis lucida) in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico, USA. Owl abundance for each quadrat was estimated with a Huggins 4-pass mark-resight population estimator, but with initial capture and resighting probabilities modeled in common across all sample quadrats. Pooling mark-resight data across quadrats was necessary because few owls were marked on individual quadrats to estimate quadrat-specific capture probabilities. Model-based estimates of owl abundance for each quadrat necessitated variance estimation procedures that take into account correlated quadrat estimates. An auxiliary variable relating to topographic roughness of sampled quadrats provided a useful covariate for a ratio estimator. |
doi_str_mv | 10.2307/3803055 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18791198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3803055</jstor_id><sourcerecordid>3803055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-447460b7a6079842f886522f49be4097c07e59a2a4eb7e7aacdb4627f4465c4a3</originalsourceid><addsrcrecordid>eNp10G1LwzAQB_AgCs4pfoUiPryqXpJrkr7UMR9goDAHvitpTLWja2bSIvrpzVhBEHyVI_zuz90RckzhknGQV1wBhyzbISOac5kyReUuGQEwlmZIX_bJQQhLAE6pEiNyMw1dvdJd3b4lT27dN7F0bTKvv23yWXfvycR5b-OvfU3merVuNnDR1l0yNNpwSPYq3QR7NLxjsridPk_u09nj3cPkepYajtCliBIFlFILkLlCViklMsYqzEuLkEsD0ma5ZhptKa3U2ryWKJisEEVmUPMxOd_mrr376G3oilUdjG0a3VrXh4IqmVOaqwhP_sCl630bZysYR8ZAChrRxRYZ70LwtirWPu7jvwoKxeaQxXDIKM-GOB2MbiqvW1OHXx63EhwwutOtW4bO-X_jfgAfZ3tH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234220761</pqid></control><display><type>article</type><title>Estimating Population Size with Correlated Sampling Unit Estimates</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Bowden, David C. ; White, Gary C. ; Franklin, Alan B. ; Ganey, Joseph L.</creator><creatorcontrib>Bowden, David C. ; White, Gary C. ; Franklin, Alan B. ; Ganey, Joseph L.</creatorcontrib><description>Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark-recapture or distance sampling methods occur when data are pooled across quadrats to estimate, for example, capture probability parameters or sighting functions. When only minimal information is available from each quadrat, pooling of data across quadrats may be necessary to efficiently estimate capture probabilities or sighting functions. We further include information from a quadrat-based auxiliary variable to more precisely estimate total population size via a ratio estimator. We also provide variance estimators for the difference between or the ratio of 2 abundance estimates, taken at different times. We present an example based on estimating the number of Mexican spotted owls (Strix occidentalis lucida) in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico, USA. Owl abundance for each quadrat was estimated with a Huggins 4-pass mark-resight population estimator, but with initial capture and resighting probabilities modeled in common across all sample quadrats. Pooling mark-resight data across quadrats was necessary because few owls were marked on individual quadrats to estimate quadrat-specific capture probabilities. Model-based estimates of owl abundance for each quadrat necessitated variance estimation procedures that take into account correlated quadrat estimates. An auxiliary variable relating to topographic roughness of sampled quadrats provided a useful covariate for a ratio estimator.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.2307/3803055</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Bethesda, MD: The Wildlife Society</publisher><subject>Animal populations ; Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Conservation, protection and management of environment and wildlife ; Covariance ; Environmental degradation: ecosystems survey and restoration ; Estimating techniques ; Estimation methods ; Estimation theory ; Estimators ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Mountains ; Owls ; Population estimates ; Population number ; Population sampling ; Population size ; Sampling methods ; Statistical variance ; Unbiased estimators ; Wildlife management ; Wildlife population estimation</subject><ispartof>The Journal of wildlife management, 2003-01, Vol.67 (1), p.1-10</ispartof><rights>Copyright 2003 The Wildlife Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Wildlife Society Jan 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-447460b7a6079842f886522f49be4097c07e59a2a4eb7e7aacdb4627f4465c4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3803055$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3803055$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,4024,27923,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14606304$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowden, David C.</creatorcontrib><creatorcontrib>White, Gary C.</creatorcontrib><creatorcontrib>Franklin, Alan B.</creatorcontrib><creatorcontrib>Ganey, Joseph L.</creatorcontrib><title>Estimating Population Size with Correlated Sampling Unit Estimates</title><title>The Journal of wildlife management</title><description>Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark-recapture or distance sampling methods occur when data are pooled across quadrats to estimate, for example, capture probability parameters or sighting functions. When only minimal information is available from each quadrat, pooling of data across quadrats may be necessary to efficiently estimate capture probabilities or sighting functions. We further include information from a quadrat-based auxiliary variable to more precisely estimate total population size via a ratio estimator. We also provide variance estimators for the difference between or the ratio of 2 abundance estimates, taken at different times. We present an example based on estimating the number of Mexican spotted owls (Strix occidentalis lucida) in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico, USA. Owl abundance for each quadrat was estimated with a Huggins 4-pass mark-resight population estimator, but with initial capture and resighting probabilities modeled in common across all sample quadrats. Pooling mark-resight data across quadrats was necessary because few owls were marked on individual quadrats to estimate quadrat-specific capture probabilities. Model-based estimates of owl abundance for each quadrat necessitated variance estimation procedures that take into account correlated quadrat estimates. An auxiliary variable relating to topographic roughness of sampled quadrats provided a useful covariate for a ratio estimator.</description><subject>Animal populations</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Covariance</subject><subject>Environmental degradation: ecosystems survey and restoration</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Mountains</subject><subject>Owls</subject><subject>Population estimates</subject><subject>Population number</subject><subject>Population sampling</subject><subject>Population size</subject><subject>Sampling methods</subject><subject>Statistical variance</subject><subject>Unbiased estimators</subject><subject>Wildlife management</subject><subject>Wildlife population estimation</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp10G1LwzAQB_AgCs4pfoUiPryqXpJrkr7UMR9goDAHvitpTLWja2bSIvrpzVhBEHyVI_zuz90RckzhknGQV1wBhyzbISOac5kyReUuGQEwlmZIX_bJQQhLAE6pEiNyMw1dvdJd3b4lT27dN7F0bTKvv23yWXfvycR5b-OvfU3merVuNnDR1l0yNNpwSPYq3QR7NLxjsridPk_u09nj3cPkepYajtCliBIFlFILkLlCViklMsYqzEuLkEsD0ma5ZhptKa3U2ryWKJisEEVmUPMxOd_mrr376G3oilUdjG0a3VrXh4IqmVOaqwhP_sCl630bZysYR8ZAChrRxRYZ70LwtirWPu7jvwoKxeaQxXDIKM-GOB2MbiqvW1OHXx63EhwwutOtW4bO-X_jfgAfZ3tH</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Bowden, David C.</creator><creator>White, Gary C.</creator><creator>Franklin, Alan B.</creator><creator>Ganey, Joseph L.</creator><general>The Wildlife Society</general><general>Wildlife Society</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20030101</creationdate><title>Estimating Population Size with Correlated Sampling Unit Estimates</title><author>Bowden, David C. ; White, Gary C. ; Franklin, Alan B. ; Ganey, Joseph L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-447460b7a6079842f886522f49be4097c07e59a2a4eb7e7aacdb4627f4465c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal populations</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Covariance</topic><topic>Environmental degradation: ecosystems survey and restoration</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Mountains</topic><topic>Owls</topic><topic>Population estimates</topic><topic>Population number</topic><topic>Population sampling</topic><topic>Population size</topic><topic>Sampling methods</topic><topic>Statistical variance</topic><topic>Unbiased estimators</topic><topic>Wildlife management</topic><topic>Wildlife population estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowden, David C.</creatorcontrib><creatorcontrib>White, Gary C.</creatorcontrib><creatorcontrib>Franklin, Alan B.</creatorcontrib><creatorcontrib>Ganey, Joseph L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowden, David C.</au><au>White, Gary C.</au><au>Franklin, Alan B.</au><au>Ganey, Joseph L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Population Size with Correlated Sampling Unit Estimates</atitle><jtitle>The Journal of wildlife management</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>67</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark-recapture or distance sampling methods occur when data are pooled across quadrats to estimate, for example, capture probability parameters or sighting functions. When only minimal information is available from each quadrat, pooling of data across quadrats may be necessary to efficiently estimate capture probabilities or sighting functions. We further include information from a quadrat-based auxiliary variable to more precisely estimate total population size via a ratio estimator. We also provide variance estimators for the difference between or the ratio of 2 abundance estimates, taken at different times. We present an example based on estimating the number of Mexican spotted owls (Strix occidentalis lucida) in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico, USA. Owl abundance for each quadrat was estimated with a Huggins 4-pass mark-resight population estimator, but with initial capture and resighting probabilities modeled in common across all sample quadrats. Pooling mark-resight data across quadrats was necessary because few owls were marked on individual quadrats to estimate quadrat-specific capture probabilities. Model-based estimates of owl abundance for each quadrat necessitated variance estimation procedures that take into account correlated quadrat estimates. An auxiliary variable relating to topographic roughness of sampled quadrats provided a useful covariate for a ratio estimator.</abstract><cop>Bethesda, MD</cop><pub>The Wildlife Society</pub><doi>10.2307/3803055</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2003-01, Vol.67 (1), p.1-10 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_miscellaneous_18791198 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Animal populations Animal, plant and microbial ecology Applied ecology Biological and medical sciences Conservation, protection and management of environment and wildlife Covariance Environmental degradation: ecosystems survey and restoration Estimating techniques Estimation methods Estimation theory Estimators Fundamental and applied biological sciences. Psychology General aspects. Techniques Methods and techniques (sampling, tagging, trapping, modelling...) Mountains Owls Population estimates Population number Population sampling Population size Sampling methods Statistical variance Unbiased estimators Wildlife management Wildlife population estimation |
title | Estimating Population Size with Correlated Sampling Unit Estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Population%20Size%20with%20Correlated%20Sampling%20Unit%20Estimates&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=Bowden,%20David%20C.&rft.date=2003-01-01&rft.volume=67&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.2307/3803055&rft_dat=%3Cjstor_proqu%3E3803055%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234220761&rft_id=info:pmid/&rft_jstor_id=3803055&rfr_iscdi=true |