Relationships of Leaf Dark Respiration to Leaf Nitrogen, Specific Leaf Area and Leaf Life-Span: A Test across Biomes and Functional Groups

Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity ($A_{\text{ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 1998-05, Vol.114 (4), p.471-482
Hauptverfasser: Reich, Peter B., Walters, Michael B., Ellsworth, David S., Vose, James M., Volin, John C., Gresham, Charles, Bowman, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity ($A_{\text{max}}$). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between Rdmeasured at a standard temperature and leaf life-span, N, SLA and$A_{\text{max}}$for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based Rdwas positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based Rd(Rd-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based$A_{\text{max}}$and leaf N (leaf Nmass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant$R_{\text{d-mass}}-N_{\text{mass}}$relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher Rdat any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, Rd-masswas well predicted by all combinations of leaf life-span, Nmassand/or SLA (r2≥ 0.79, P < 0.0001). At any given SLA, Rd-massrises with increasing Nmassand/or decreasing leaf life-span; and at any level of Nmass, Rd-massrises with increasing SLA and/or decreasing leaf life-span. The relationships between Rdand leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
ISSN:0029-8549
1432-1939
DOI:10.1007/s004420050471