3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-04, Vol.9 (13), p.11837-11845 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11845 |
---|---|
container_issue | 13 |
container_start_page | 11837 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Liang, Yi-Ran Zhu, Li-Na Gao, Jie Zhao, Hong-Xia Zhu, Ying Ye, Sheng Fang, Qun |
description | Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations. |
doi_str_mv | 10.1021/acsami.6b15933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878825669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878825669</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQhxdRrK-rR9mjCKm72UeTo7S-QFHwcQ2TZNKupLtxdwPWv95Ia2-eZmC-3w_mI-SUszFnKb-EKsDSjHXJVS7EDjnguZRJlqp0d7tLOSKHIXwwpkXK1D4ZpZlgOpXqgHyJWfLsjY1Y0zszXyQztMHEFZ1517UY6ZX3sKLThelo4zx9NNZA7L35HgLP3kU0lk79KkRoW_MN0ThLXyqPaI2d097W6Ok7dEN0ZpqmD7_3R1fjMdlroA14splH5O3m-nV6lzw83d5Prx4SELmOiUzrLAehQE-g4oANahSyUppzKOtGqpozLXOlskrzMp0IlvMSIM8ARMMzEEfkfN3beffZY4jF0oQK2xYsuj4UPJtkgy6t8wEdr9HKuxA8NkXnzRL8quCs-LVdrG0XG9tD4GzT3ZdLrLf4n94BuFgDQ7D4cL23w6v_tf0ATqmLcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878825669</pqid></control><display><type>article</type><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</creator><creatorcontrib>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</creatorcontrib><description>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b15933</identifier><identifier>PMID: 28306245</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization ; Diffusion ; Gases ; Microfluidics ; Proteins - chemistry</subject><ispartof>ACS applied materials & interfaces, 2017-04, Vol.9 (13), p.11837-11845</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</citedby><cites>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</cites><orcidid>0000-0002-6250-252X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b15933$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b15933$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28306245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yi-Ran</creatorcontrib><creatorcontrib>Zhu, Li-Na</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Hong-Xia</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</description><subject>Crystallization</subject><subject>Diffusion</subject><subject>Gases</subject><subject>Microfluidics</subject><subject>Proteins - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtLw0AQhxdRrK-rR9mjCKm72UeTo7S-QFHwcQ2TZNKupLtxdwPWv95Ia2-eZmC-3w_mI-SUszFnKb-EKsDSjHXJVS7EDjnguZRJlqp0d7tLOSKHIXwwpkXK1D4ZpZlgOpXqgHyJWfLsjY1Y0zszXyQztMHEFZ1517UY6ZX3sKLThelo4zx9NNZA7L35HgLP3kU0lk79KkRoW_MN0ThLXyqPaI2d097W6Ok7dEN0ZpqmD7_3R1fjMdlroA14splH5O3m-nV6lzw83d5Prx4SELmOiUzrLAehQE-g4oANahSyUppzKOtGqpozLXOlskrzMp0IlvMSIM8ARMMzEEfkfN3beffZY4jF0oQK2xYsuj4UPJtkgy6t8wEdr9HKuxA8NkXnzRL8quCs-LVdrG0XG9tD4GzT3ZdLrLf4n94BuFgDQ7D4cL23w6v_tf0ATqmLcw</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Liang, Yi-Ran</creator><creator>Zhu, Li-Na</creator><creator>Gao, Jie</creator><creator>Zhao, Hong-Xia</creator><creator>Zhu, Ying</creator><creator>Ye, Sheng</creator><creator>Fang, Qun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6250-252X</orcidid></search><sort><creationdate>20170405</creationdate><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><author>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crystallization</topic><topic>Diffusion</topic><topic>Gases</topic><topic>Microfluidics</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yi-Ran</creatorcontrib><creatorcontrib>Zhu, Li-Na</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Hong-Xia</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yi-Ran</au><au>Zhu, Li-Na</au><au>Gao, Jie</au><au>Zhao, Hong-Xia</au><au>Zhu, Ying</au><au>Ye, Sheng</au><au>Fang, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>9</volume><issue>13</issue><spage>11837</spage><epage>11845</epage><pages>11837-11845</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28306245</pmid><doi>10.1021/acsami.6b15933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6250-252X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-04, Vol.9 (13), p.11837-11845 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1878825669 |
source | MEDLINE; ACS Publications |
subjects | Crystallization Diffusion Gases Microfluidics Proteins - chemistry |
title | 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-Printed%20High-Density%20Droplet%20Array%20Chip%20for%20Miniaturized%20Protein%20Crystallization%20Screening%20under%20Vapor%20Diffusion%20Mode&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liang,%20Yi-Ran&rft.date=2017-04-05&rft.volume=9&rft.issue=13&rft.spage=11837&rft.epage=11845&rft.pages=11837-11845&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b15933&rft_dat=%3Cproquest_cross%3E1878825669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878825669&rft_id=info:pmid/28306245&rfr_iscdi=true |