3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode

Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-04, Vol.9 (13), p.11837-11845
Hauptverfasser: Liang, Yi-Ran, Zhu, Li-Na, Gao, Jie, Zhao, Hong-Xia, Zhu, Ying, Ye, Sheng, Fang, Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11845
container_issue 13
container_start_page 11837
container_title ACS applied materials & interfaces
container_volume 9
creator Liang, Yi-Ran
Zhu, Li-Na
Gao, Jie
Zhao, Hong-Xia
Zhu, Ying
Ye, Sheng
Fang, Qun
description Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
doi_str_mv 10.1021/acsami.6b15933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878825669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878825669</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQhxdRrK-rR9mjCKm72UeTo7S-QFHwcQ2TZNKupLtxdwPWv95Ia2-eZmC-3w_mI-SUszFnKb-EKsDSjHXJVS7EDjnguZRJlqp0d7tLOSKHIXwwpkXK1D4ZpZlgOpXqgHyJWfLsjY1Y0zszXyQztMHEFZ1517UY6ZX3sKLThelo4zx9NNZA7L35HgLP3kU0lk79KkRoW_MN0ThLXyqPaI2d097W6Ok7dEN0ZpqmD7_3R1fjMdlroA14splH5O3m-nV6lzw83d5Prx4SELmOiUzrLAehQE-g4oANahSyUppzKOtGqpozLXOlskrzMp0IlvMSIM8ARMMzEEfkfN3beffZY4jF0oQK2xYsuj4UPJtkgy6t8wEdr9HKuxA8NkXnzRL8quCs-LVdrG0XG9tD4GzT3ZdLrLf4n94BuFgDQ7D4cL23w6v_tf0ATqmLcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878825669</pqid></control><display><type>article</type><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</creator><creatorcontrib>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</creatorcontrib><description>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b15933</identifier><identifier>PMID: 28306245</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization ; Diffusion ; Gases ; Microfluidics ; Proteins - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2017-04, Vol.9 (13), p.11837-11845</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</citedby><cites>FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</cites><orcidid>0000-0002-6250-252X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b15933$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b15933$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28306245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yi-Ran</creatorcontrib><creatorcontrib>Zhu, Li-Na</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Hong-Xia</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</description><subject>Crystallization</subject><subject>Diffusion</subject><subject>Gases</subject><subject>Microfluidics</subject><subject>Proteins - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtLw0AQhxdRrK-rR9mjCKm72UeTo7S-QFHwcQ2TZNKupLtxdwPWv95Ia2-eZmC-3w_mI-SUszFnKb-EKsDSjHXJVS7EDjnguZRJlqp0d7tLOSKHIXwwpkXK1D4ZpZlgOpXqgHyJWfLsjY1Y0zszXyQztMHEFZ1517UY6ZX3sKLThelo4zx9NNZA7L35HgLP3kU0lk79KkRoW_MN0ThLXyqPaI2d097W6Ok7dEN0ZpqmD7_3R1fjMdlroA14splH5O3m-nV6lzw83d5Prx4SELmOiUzrLAehQE-g4oANahSyUppzKOtGqpozLXOlskrzMp0IlvMSIM8ARMMzEEfkfN3beffZY4jF0oQK2xYsuj4UPJtkgy6t8wEdr9HKuxA8NkXnzRL8quCs-LVdrG0XG9tD4GzT3ZdLrLf4n94BuFgDQ7D4cL23w6v_tf0ATqmLcw</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Liang, Yi-Ran</creator><creator>Zhu, Li-Na</creator><creator>Gao, Jie</creator><creator>Zhao, Hong-Xia</creator><creator>Zhu, Ying</creator><creator>Ye, Sheng</creator><creator>Fang, Qun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6250-252X</orcidid></search><sort><creationdate>20170405</creationdate><title>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</title><author>Liang, Yi-Ran ; Zhu, Li-Na ; Gao, Jie ; Zhao, Hong-Xia ; Zhu, Ying ; Ye, Sheng ; Fang, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-42d89a35a67ac1aefe6e34c5611abdf45d10649558c61b273091baa98aa3f18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crystallization</topic><topic>Diffusion</topic><topic>Gases</topic><topic>Microfluidics</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yi-Ran</creatorcontrib><creatorcontrib>Zhu, Li-Na</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhao, Hong-Xia</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Fang, Qun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yi-Ran</au><au>Zhu, Li-Na</au><au>Gao, Jie</au><au>Zhao, Hong-Xia</au><au>Zhu, Ying</au><au>Ye, Sheng</au><au>Fang, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>9</volume><issue>13</issue><spage>11837</spage><epage>11845</epage><pages>11837-11845</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20–100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28306245</pmid><doi>10.1021/acsami.6b15933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6250-252X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-04, Vol.9 (13), p.11837-11845
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1878825669
source MEDLINE; ACS Publications
subjects Crystallization
Diffusion
Gases
Microfluidics
Proteins - chemistry
title 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-Printed%20High-Density%20Droplet%20Array%20Chip%20for%20Miniaturized%20Protein%20Crystallization%20Screening%20under%20Vapor%20Diffusion%20Mode&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liang,%20Yi-Ran&rft.date=2017-04-05&rft.volume=9&rft.issue=13&rft.spage=11837&rft.epage=11845&rft.pages=11837-11845&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b15933&rft_dat=%3Cproquest_cross%3E1878825669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878825669&rft_id=info:pmid/28306245&rfr_iscdi=true