The Dynamic Newsvendor Model with Correlated Demand

ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision sciences 2016-02, Vol.47 (1), p.11-30
Hauptverfasser: Alwan, Layth C., Xu, Minghui, Yao, Dong-Qing, Yue, Xiaohang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 11
container_title Decision sciences
container_volume 47
creator Alwan, Layth C.
Xu, Minghui
Yao, Dong-Qing
Yue, Xiaohang
description ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. 
doi_str_mv 10.1111/deci.12171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878800007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3976311061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpLPyCSCwIKXBnx7UzopSPSqVIfKij5ToXEUiTYreU_ntSCgwMCC9envfsexk7RDjF9pzl5MpT5Khwi3VQJhDLFOU26wAgxkqg3GV7ITwDQE8mosPEwxNF_VVtp6WLRrQMb1TnjY9umpyqaFnOn6Ks8Z4qO6c86tPU1vk-2ylsFejg6-6yx8uLh-w6Ht5eDbLzYewkT9vXSEwwVz1ZgKMUeEFa6wIV5A4nYHmBvNBSJ0khUo7OTiTnkLcfS0kBOie67Hgzd-ab1wWFuZmWwVFV2ZqaRTColdbtJqD-QQESnYCQLT36RZ-bha_bRQwqhYqrnl6rk41yvgnBU2FmvpxavzIIZl21WVdtPqtuMW7wsqxo9Yc0_Yts8J2JN5kyzOn9J2P9i-kpoaQZj66MHGfDu_Hw3tyID2C0jJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771727685</pqid></control><display><type>article</type><title>The Dynamic Newsvendor Model with Correlated Demand</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</creator><creatorcontrib>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</creatorcontrib><description>ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </description><identifier>ISSN: 0011-7315</identifier><identifier>EISSN: 1540-5915</identifier><identifier>DOI: 10.1111/deci.12171</identifier><identifier>CODEN: DESCDQ</identifier><language>eng</language><publisher>Atlanta: Blackwell Publishing Ltd</publisher><subject>Autocorrelated Demand ; Correlation ; Correlation analysis ; Cost engineering ; Demand ; Demand analysis ; Demand Forecasting ; Dynamic tests ; Dynamics ; Forecasting ; Forecasting techniques ; Mathematical models ; Measurement errors ; Newsvendor Model ; Smoothing ; Studies</subject><ispartof>Decision sciences, 2016-02, Vol.47 (1), p.11-30</ispartof><rights>2015 Decision Sciences Institute</rights><rights>Copyright American Institute for Decision Sciences Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</citedby><cites>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdeci.12171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdeci.12171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alwan, Layth C.</creatorcontrib><creatorcontrib>Xu, Minghui</creatorcontrib><creatorcontrib>Yao, Dong-Qing</creatorcontrib><creatorcontrib>Yue, Xiaohang</creatorcontrib><title>The Dynamic Newsvendor Model with Correlated Demand</title><title>Decision sciences</title><addtitle>Decision Sciences</addtitle><description>ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </description><subject>Autocorrelated Demand</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cost engineering</subject><subject>Demand</subject><subject>Demand analysis</subject><subject>Demand Forecasting</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Mathematical models</subject><subject>Measurement errors</subject><subject>Newsvendor Model</subject><subject>Smoothing</subject><subject>Studies</subject><issn>0011-7315</issn><issn>1540-5915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpLPyCSCwIKXBnx7UzopSPSqVIfKij5ToXEUiTYreU_ntSCgwMCC9envfsexk7RDjF9pzl5MpT5Khwi3VQJhDLFOU26wAgxkqg3GV7ITwDQE8mosPEwxNF_VVtp6WLRrQMb1TnjY9umpyqaFnOn6Ks8Z4qO6c86tPU1vk-2ylsFejg6-6yx8uLh-w6Ht5eDbLzYewkT9vXSEwwVz1ZgKMUeEFa6wIV5A4nYHmBvNBSJ0khUo7OTiTnkLcfS0kBOie67Hgzd-ab1wWFuZmWwVFV2ZqaRTColdbtJqD-QQESnYCQLT36RZ-bha_bRQwqhYqrnl6rk41yvgnBU2FmvpxavzIIZl21WVdtPqtuMW7wsqxo9Yc0_Yts8J2JN5kyzOn9J2P9i-kpoaQZj66MHGfDu_Hw3tyID2C0jJw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Alwan, Layth C.</creator><creator>Xu, Minghui</creator><creator>Yao, Dong-Qing</creator><creator>Yue, Xiaohang</creator><general>Blackwell Publishing Ltd</general><general>American Institute for Decision Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201602</creationdate><title>The Dynamic Newsvendor Model with Correlated Demand</title><author>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Autocorrelated Demand</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cost engineering</topic><topic>Demand</topic><topic>Demand analysis</topic><topic>Demand Forecasting</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Mathematical models</topic><topic>Measurement errors</topic><topic>Newsvendor Model</topic><topic>Smoothing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alwan, Layth C.</creatorcontrib><creatorcontrib>Xu, Minghui</creatorcontrib><creatorcontrib>Yao, Dong-Qing</creatorcontrib><creatorcontrib>Yue, Xiaohang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alwan, Layth C.</au><au>Xu, Minghui</au><au>Yao, Dong-Qing</au><au>Yue, Xiaohang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamic Newsvendor Model with Correlated Demand</atitle><jtitle>Decision sciences</jtitle><addtitle>Decision Sciences</addtitle><date>2016-02</date><risdate>2016</risdate><volume>47</volume><issue>1</issue><spage>11</spage><epage>30</epage><pages>11-30</pages><issn>0011-7315</issn><eissn>1540-5915</eissn><coden>DESCDQ</coden><abstract>ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </abstract><cop>Atlanta</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/deci.12171</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-7315
ispartof Decision sciences, 2016-02, Vol.47 (1), p.11-30
issn 0011-7315
1540-5915
language eng
recordid cdi_proquest_miscellaneous_1878800007
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Autocorrelated Demand
Correlation
Correlation analysis
Cost engineering
Demand
Demand analysis
Demand Forecasting
Dynamic tests
Dynamics
Forecasting
Forecasting techniques
Mathematical models
Measurement errors
Newsvendor Model
Smoothing
Studies
title The Dynamic Newsvendor Model with Correlated Demand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamic%20Newsvendor%20Model%20with%20Correlated%20Demand&rft.jtitle=Decision%20sciences&rft.au=Alwan,%20Layth%20C.&rft.date=2016-02&rft.volume=47&rft.issue=1&rft.spage=11&rft.epage=30&rft.pages=11-30&rft.issn=0011-7315&rft.eissn=1540-5915&rft.coden=DESCDQ&rft_id=info:doi/10.1111/deci.12171&rft_dat=%3Cproquest_cross%3E3976311061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771727685&rft_id=info:pmid/&rfr_iscdi=true