The Dynamic Newsvendor Model with Correlated Demand
ABSTRACT The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Spe...
Gespeichert in:
Veröffentlicht in: | Decision sciences 2016-02, Vol.47 (1), p.11-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Decision sciences |
container_volume | 47 |
creator | Alwan, Layth C. Xu, Minghui Yao, Dong-Qing Yue, Xiaohang |
description | ABSTRACT
The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. |
doi_str_mv | 10.1111/deci.12171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878800007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3976311061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpLPyCSCwIKXBnx7UzopSPSqVIfKij5ToXEUiTYreU_ntSCgwMCC9envfsexk7RDjF9pzl5MpT5Khwi3VQJhDLFOU26wAgxkqg3GV7ITwDQE8mosPEwxNF_VVtp6WLRrQMb1TnjY9umpyqaFnOn6Ks8Z4qO6c86tPU1vk-2ylsFejg6-6yx8uLh-w6Ht5eDbLzYewkT9vXSEwwVz1ZgKMUeEFa6wIV5A4nYHmBvNBSJ0khUo7OTiTnkLcfS0kBOie67Hgzd-ab1wWFuZmWwVFV2ZqaRTColdbtJqD-QQESnYCQLT36RZ-bha_bRQwqhYqrnl6rk41yvgnBU2FmvpxavzIIZl21WVdtPqtuMW7wsqxo9Yc0_Yts8J2JN5kyzOn9J2P9i-kpoaQZj66MHGfDu_Hw3tyID2C0jJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771727685</pqid></control><display><type>article</type><title>The Dynamic Newsvendor Model with Correlated Demand</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</creator><creatorcontrib>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</creatorcontrib><description>ABSTRACT
The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </description><identifier>ISSN: 0011-7315</identifier><identifier>EISSN: 1540-5915</identifier><identifier>DOI: 10.1111/deci.12171</identifier><identifier>CODEN: DESCDQ</identifier><language>eng</language><publisher>Atlanta: Blackwell Publishing Ltd</publisher><subject>Autocorrelated Demand ; Correlation ; Correlation analysis ; Cost engineering ; Demand ; Demand analysis ; Demand Forecasting ; Dynamic tests ; Dynamics ; Forecasting ; Forecasting techniques ; Mathematical models ; Measurement errors ; Newsvendor Model ; Smoothing ; Studies</subject><ispartof>Decision sciences, 2016-02, Vol.47 (1), p.11-30</ispartof><rights>2015 Decision Sciences Institute</rights><rights>Copyright American Institute for Decision Sciences Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</citedby><cites>FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdeci.12171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdeci.12171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alwan, Layth C.</creatorcontrib><creatorcontrib>Xu, Minghui</creatorcontrib><creatorcontrib>Yao, Dong-Qing</creatorcontrib><creatorcontrib>Yue, Xiaohang</creatorcontrib><title>The Dynamic Newsvendor Model with Correlated Demand</title><title>Decision sciences</title><addtitle>Decision Sciences</addtitle><description>ABSTRACT
The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </description><subject>Autocorrelated Demand</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cost engineering</subject><subject>Demand</subject><subject>Demand analysis</subject><subject>Demand Forecasting</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Mathematical models</subject><subject>Measurement errors</subject><subject>Newsvendor Model</subject><subject>Smoothing</subject><subject>Studies</subject><issn>0011-7315</issn><issn>1540-5915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpLPyCSCwIKXBnx7UzopSPSqVIfKij5ToXEUiTYreU_ntSCgwMCC9envfsexk7RDjF9pzl5MpT5Khwi3VQJhDLFOU26wAgxkqg3GV7ITwDQE8mosPEwxNF_VVtp6WLRrQMb1TnjY9umpyqaFnOn6Ks8Z4qO6c86tPU1vk-2ylsFejg6-6yx8uLh-w6Ht5eDbLzYewkT9vXSEwwVz1ZgKMUeEFa6wIV5A4nYHmBvNBSJ0khUo7OTiTnkLcfS0kBOie67Hgzd-ab1wWFuZmWwVFV2ZqaRTColdbtJqD-QQESnYCQLT36RZ-bha_bRQwqhYqrnl6rk41yvgnBU2FmvpxavzIIZl21WVdtPqtuMW7wsqxo9Yc0_Yts8J2JN5kyzOn9J2P9i-kpoaQZj66MHGfDu_Hw3tyID2C0jJw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Alwan, Layth C.</creator><creator>Xu, Minghui</creator><creator>Yao, Dong-Qing</creator><creator>Yue, Xiaohang</creator><general>Blackwell Publishing Ltd</general><general>American Institute for Decision Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201602</creationdate><title>The Dynamic Newsvendor Model with Correlated Demand</title><author>Alwan, Layth C. ; Xu, Minghui ; Yao, Dong-Qing ; Yue, Xiaohang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5291-7e3b1d765f0ce902fe888f170dc1b0a2f12f85844f3921cab5220d0069e701cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Autocorrelated Demand</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cost engineering</topic><topic>Demand</topic><topic>Demand analysis</topic><topic>Demand Forecasting</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Mathematical models</topic><topic>Measurement errors</topic><topic>Newsvendor Model</topic><topic>Smoothing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alwan, Layth C.</creatorcontrib><creatorcontrib>Xu, Minghui</creatorcontrib><creatorcontrib>Yao, Dong-Qing</creatorcontrib><creatorcontrib>Yue, Xiaohang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alwan, Layth C.</au><au>Xu, Minghui</au><au>Yao, Dong-Qing</au><au>Yue, Xiaohang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamic Newsvendor Model with Correlated Demand</atitle><jtitle>Decision sciences</jtitle><addtitle>Decision Sciences</addtitle><date>2016-02</date><risdate>2016</risdate><volume>47</volume><issue>1</issue><spage>11</spage><epage>30</epage><pages>11-30</pages><issn>0011-7315</issn><eissn>1540-5915</eissn><coden>DESCDQ</coden><abstract>ABSTRACT
The classic newsvendor model was developed under the assumption that period‐to‐period demand is independent over time. In real‐life applications, the notion of independent demand is often challenged. In this article, we examine the newsvendor model in the presence of correlated demands. Specifically under a stationary AR(1) demand, we study the performance of the traditional newsvendor implementation versus a dynamic forecast‐based implementation. We demonstrate theoretically that implementing a minimum mean square error (MSE) forecast model will always have improved performance relative to the traditional implementation in terms of cost savings. In light of the widespread usage of all‐purpose models like the moving‐average method and exponential smoothing method, we compare the performance of these popular alternative forecasting methods against both the MSE‐optimal implementation and the traditional newsvendor implementation. If only alternative forecasting methods are being considered, we find that under certain conditions it is best to ignore the correlation and opt out of forecasting and to simply implement the traditional newsvendor model. </abstract><cop>Atlanta</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/deci.12171</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-7315 |
ispartof | Decision sciences, 2016-02, Vol.47 (1), p.11-30 |
issn | 0011-7315 1540-5915 |
language | eng |
recordid | cdi_proquest_miscellaneous_1878800007 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Autocorrelated Demand Correlation Correlation analysis Cost engineering Demand Demand analysis Demand Forecasting Dynamic tests Dynamics Forecasting Forecasting techniques Mathematical models Measurement errors Newsvendor Model Smoothing Studies |
title | The Dynamic Newsvendor Model with Correlated Demand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamic%20Newsvendor%20Model%20with%20Correlated%20Demand&rft.jtitle=Decision%20sciences&rft.au=Alwan,%20Layth%20C.&rft.date=2016-02&rft.volume=47&rft.issue=1&rft.spage=11&rft.epage=30&rft.pages=11-30&rft.issn=0011-7315&rft.eissn=1540-5915&rft.coden=DESCDQ&rft_id=info:doi/10.1111/deci.12171&rft_dat=%3Cproquest_cross%3E3976311061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771727685&rft_id=info:pmid/&rfr_iscdi=true |