OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK

We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2016-10, Vol.26 (4), p.785-834
Hauptverfasser: Bo, Lijun, Capponi, Agostino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 4
container_start_page 785
container_title Mathematical finance
container_volume 26
creator Bo, Lijun
Capponi, Agostino
description We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.
doi_str_mv 10.1111/mafi.12074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878796755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4186295381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</originalsourceid><addsrcrecordid>eNp90E1PgzAcBvDGaOKcXvwEJF6MCbOF0sKRMIaNA5bB5rHpupIw2Yt0i-7b24l68GAvbdrf80_zAHCL4ACZ9bgWVT1ADqT4DPQQJtQOAuKdgx4MCLQRcegluNJ6BSHEGNMeSPJJydJwbLFsHhdlGmelOVrRNB6y0hrGUzYPS2aerEk-LUf5mOXWLDP3VpRnZZiwPLOmrHi-BheVaLS6-d77YDaKy-jJHucJi8KxLQl2sI0DKR3kCyI9P8CVkFBhF0MPIekLtXCVKwK6dDyhkJQEqYUipFr4VFZ4SVzXd_vgvpu7a7dvB6X3fF1rqZpGbNT2oDnyqU8DQj3P0Ls_dLU9tBvzO6Mc6BmCiFEPnZLtVutWVXzX1mvRHjmC_NQpP3XKvzo1GHX4vW7U8R_J03DEfjJ2l6n1Xn38ZkT7ygl1qcdfsoQXE0iLlPjccT8BzD6AvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820555316</pqid></control><display><type>article</type><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Bo, Lijun ; Capponi, Agostino</creator><creatorcontrib>Bo, Lijun ; Capponi, Agostino</creatorcontrib><description>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/mafi.12074</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>contagion risk ; Credit default swaps ; Default ; dynamic portfolio optimization ; Finance ; interacting default intensities ; Ordinary differential equations ; Portfolio management ; Studies ; Wealth management</subject><ispartof>Mathematical finance, 2016-10, Vol.26 (4), p.785-834</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</citedby><cites>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmafi.12074$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmafi.12074$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bo, Lijun</creatorcontrib><creatorcontrib>Capponi, Agostino</creatorcontrib><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><title>Mathematical finance</title><addtitle>Mathematical Finance</addtitle><description>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</description><subject>contagion risk</subject><subject>Credit default swaps</subject><subject>Default</subject><subject>dynamic portfolio optimization</subject><subject>Finance</subject><subject>interacting default intensities</subject><subject>Ordinary differential equations</subject><subject>Portfolio management</subject><subject>Studies</subject><subject>Wealth management</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1PgzAcBvDGaOKcXvwEJF6MCbOF0sKRMIaNA5bB5rHpupIw2Yt0i-7b24l68GAvbdrf80_zAHCL4ACZ9bgWVT1ADqT4DPQQJtQOAuKdgx4MCLQRcegluNJ6BSHEGNMeSPJJydJwbLFsHhdlGmelOVrRNB6y0hrGUzYPS2aerEk-LUf5mOXWLDP3VpRnZZiwPLOmrHi-BheVaLS6-d77YDaKy-jJHucJi8KxLQl2sI0DKR3kCyI9P8CVkFBhF0MPIekLtXCVKwK6dDyhkJQEqYUipFr4VFZ4SVzXd_vgvpu7a7dvB6X3fF1rqZpGbNT2oDnyqU8DQj3P0Ls_dLU9tBvzO6Mc6BmCiFEPnZLtVutWVXzX1mvRHjmC_NQpP3XKvzo1GHX4vW7U8R_J03DEfjJ2l6n1Xn38ZkT7ygl1qcdfsoQXE0iLlPjccT8BzD6AvA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Bo, Lijun</creator><creator>Capponi, Agostino</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201610</creationdate><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><author>Bo, Lijun ; Capponi, Agostino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>contagion risk</topic><topic>Credit default swaps</topic><topic>Default</topic><topic>dynamic portfolio optimization</topic><topic>Finance</topic><topic>interacting default intensities</topic><topic>Ordinary differential equations</topic><topic>Portfolio management</topic><topic>Studies</topic><topic>Wealth management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Lijun</creatorcontrib><creatorcontrib>Capponi, Agostino</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Lijun</au><au>Capponi, Agostino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</atitle><jtitle>Mathematical finance</jtitle><addtitle>Mathematical Finance</addtitle><date>2016-10</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>785</spage><epage>834</epage><pages>785-834</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/mafi.12074</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2016-10, Vol.26 (4), p.785-834
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_1878796755
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects contagion risk
Credit default swaps
Default
dynamic portfolio optimization
Finance
interacting default intensities
Ordinary differential equations
Portfolio management
Studies
Wealth management
title OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20INVESTMENT%20IN%20CREDIT%20DERIVATIVES%20PORTFOLIO%20UNDER%20CONTAGION%20RISK&rft.jtitle=Mathematical%20finance&rft.au=Bo,%20Lijun&rft.date=2016-10&rft.volume=26&rft.issue=4&rft.spage=785&rft.epage=834&rft.pages=785-834&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/mafi.12074&rft_dat=%3Cproquest_cross%3E4186295381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820555316&rft_id=info:pmid/&rfr_iscdi=true