OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK
We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default...
Gespeichert in:
Veröffentlicht in: | Mathematical finance 2016-10, Vol.26 (4), p.785-834 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 4 |
container_start_page | 785 |
container_title | Mathematical finance |
container_volume | 26 |
creator | Bo, Lijun Capponi, Agostino |
description | We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk. |
doi_str_mv | 10.1111/mafi.12074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878796755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4186295381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</originalsourceid><addsrcrecordid>eNp90E1PgzAcBvDGaOKcXvwEJF6MCbOF0sKRMIaNA5bB5rHpupIw2Yt0i-7b24l68GAvbdrf80_zAHCL4ACZ9bgWVT1ADqT4DPQQJtQOAuKdgx4MCLQRcegluNJ6BSHEGNMeSPJJydJwbLFsHhdlGmelOVrRNB6y0hrGUzYPS2aerEk-LUf5mOXWLDP3VpRnZZiwPLOmrHi-BheVaLS6-d77YDaKy-jJHucJi8KxLQl2sI0DKR3kCyI9P8CVkFBhF0MPIekLtXCVKwK6dDyhkJQEqYUipFr4VFZ4SVzXd_vgvpu7a7dvB6X3fF1rqZpGbNT2oDnyqU8DQj3P0Ls_dLU9tBvzO6Mc6BmCiFEPnZLtVutWVXzX1mvRHjmC_NQpP3XKvzo1GHX4vW7U8R_J03DEfjJ2l6n1Xn38ZkT7ygl1qcdfsoQXE0iLlPjccT8BzD6AvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820555316</pqid></control><display><type>article</type><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Bo, Lijun ; Capponi, Agostino</creator><creatorcontrib>Bo, Lijun ; Capponi, Agostino</creatorcontrib><description>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/mafi.12074</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>contagion risk ; Credit default swaps ; Default ; dynamic portfolio optimization ; Finance ; interacting default intensities ; Ordinary differential equations ; Portfolio management ; Studies ; Wealth management</subject><ispartof>Mathematical finance, 2016-10, Vol.26 (4), p.785-834</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</citedby><cites>FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmafi.12074$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmafi.12074$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bo, Lijun</creatorcontrib><creatorcontrib>Capponi, Agostino</creatorcontrib><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><title>Mathematical finance</title><addtitle>Mathematical Finance</addtitle><description>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</description><subject>contagion risk</subject><subject>Credit default swaps</subject><subject>Default</subject><subject>dynamic portfolio optimization</subject><subject>Finance</subject><subject>interacting default intensities</subject><subject>Ordinary differential equations</subject><subject>Portfolio management</subject><subject>Studies</subject><subject>Wealth management</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1PgzAcBvDGaOKcXvwEJF6MCbOF0sKRMIaNA5bB5rHpupIw2Yt0i-7b24l68GAvbdrf80_zAHCL4ACZ9bgWVT1ADqT4DPQQJtQOAuKdgx4MCLQRcegluNJ6BSHEGNMeSPJJydJwbLFsHhdlGmelOVrRNB6y0hrGUzYPS2aerEk-LUf5mOXWLDP3VpRnZZiwPLOmrHi-BheVaLS6-d77YDaKy-jJHucJi8KxLQl2sI0DKR3kCyI9P8CVkFBhF0MPIekLtXCVKwK6dDyhkJQEqYUipFr4VFZ4SVzXd_vgvpu7a7dvB6X3fF1rqZpGbNT2oDnyqU8DQj3P0Ls_dLU9tBvzO6Mc6BmCiFEPnZLtVutWVXzX1mvRHjmC_NQpP3XKvzo1GHX4vW7U8R_J03DEfjJ2l6n1Xn38ZkT7ygl1qcdfsoQXE0iLlPjccT8BzD6AvA</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Bo, Lijun</creator><creator>Capponi, Agostino</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201610</creationdate><title>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</title><author>Bo, Lijun ; Capponi, Agostino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6424-49cc218a6c5894fac0e4340511c8aeb3e3a97d25ae1cc61ebe66fb87cf4d63383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>contagion risk</topic><topic>Credit default swaps</topic><topic>Default</topic><topic>dynamic portfolio optimization</topic><topic>Finance</topic><topic>interacting default intensities</topic><topic>Ordinary differential equations</topic><topic>Portfolio management</topic><topic>Studies</topic><topic>Wealth management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Lijun</creatorcontrib><creatorcontrib>Capponi, Agostino</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Lijun</au><au>Capponi, Agostino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK</atitle><jtitle>Mathematical finance</jtitle><addtitle>Mathematical Finance</addtitle><date>2016-10</date><risdate>2016</risdate><volume>26</volume><issue>4</issue><spage>785</spage><epage>834</epage><pages>785-834</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced‐form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton‐Jacobi‐Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/mafi.12074</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2016-10, Vol.26 (4), p.785-834 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1878796755 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | contagion risk Credit default swaps Default dynamic portfolio optimization Finance interacting default intensities Ordinary differential equations Portfolio management Studies Wealth management |
title | OPTIMAL INVESTMENT IN CREDIT DERIVATIVES PORTFOLIO UNDER CONTAGION RISK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20INVESTMENT%20IN%20CREDIT%20DERIVATIVES%20PORTFOLIO%20UNDER%20CONTAGION%20RISK&rft.jtitle=Mathematical%20finance&rft.au=Bo,%20Lijun&rft.date=2016-10&rft.volume=26&rft.issue=4&rft.spage=785&rft.epage=834&rft.pages=785-834&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/mafi.12074&rft_dat=%3Cproquest_cross%3E4186295381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820555316&rft_id=info:pmid/&rfr_iscdi=true |