Can Internet Search Queries Help to Predict Stock Market Volatility?

We study the dynamics of stock market volatility and retail investors' attention to the stock market. The latter is measured by internet search queries related to the leading stock market index. We find a strong co‐movement of the Dow Jones' realised volatility and the volume of search que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European financial management : the journal of the European Financial Management Association 2016-03, Vol.22 (2), p.171-192
Hauptverfasser: Dimpfl, Thomas, Jank, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 171
container_title European financial management : the journal of the European Financial Management Association
container_volume 22
creator Dimpfl, Thomas
Jank, Stephan
description We study the dynamics of stock market volatility and retail investors' attention to the stock market. The latter is measured by internet search queries related to the leading stock market index. We find a strong co‐movement of the Dow Jones' realised volatility and the volume of search queries for its name. Furthermore, search queries Granger‐cause volatility: a heightened number of searches today is followed by an increase in volatility tomorrow. Including search queries in autoregressive models of realised volatility improves volatility forecasts in‐sample, out‐of‐sample, for different forecasting horizons, and in particular in high‐volatility phases.
doi_str_mv 10.1111/eufm.12058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878796564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878796564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6368-44523c554da32a538a3429614e6d941e1b7a6d955a2a6422ce3f417818f4c0313</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AiCs7pxU9Q8CJCZ_OenkSne4HNF3Q6dgkxe4rdunYmLbpvb-bUg4flkgfy-4eHfxAco7iF_DmHOl20EI6Z3AkaiHIZxYSPd_1MGI2ESOR-cODcLI5jyphsBNdtXYT9ogJbQBU-grbmLXyowWbgwh7ky7Aqw3sL08z456o083Co7dzb5zLXVZZn1eriMNhLde7g6OduBqPOzVO7Fw3uuv325SAynPhVKGWYGMboVBOsGZGaUJxwRIFPE4oAvQrtJ8Y01pxibICkFAmJZEpNTBBpBqebf5e2fK_BVWqROQN5rgsoa6eQFFIknHHq6ck_OitrW_jtFEowQRRLzLYqwaUgVCZrdbZRxpbOWUjV0mYLbVcKxWpdu1rXrr5r9xht8EeWw2qLVDejzvA3E20ymavg8y_je1ZcEMHUy21XjSftRLCricLkC8yikDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768734895</pqid></control><display><type>article</type><title>Can Internet Search Queries Help to Predict Stock Market Volatility?</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Dimpfl, Thomas ; Jank, Stephan</creator><creatorcontrib>Dimpfl, Thomas ; Jank, Stephan</creatorcontrib><description>We study the dynamics of stock market volatility and retail investors' attention to the stock market. The latter is measured by internet search queries related to the leading stock market index. We find a strong co‐movement of the Dow Jones' realised volatility and the volume of search queries for its name. Furthermore, search queries Granger‐cause volatility: a heightened number of searches today is followed by an increase in volatility tomorrow. Including search queries in autoregressive models of realised volatility improves volatility forecasts in‐sample, out‐of‐sample, for different forecasting horizons, and in particular in high‐volatility phases.</description><identifier>ISSN: 1354-7798</identifier><identifier>EISSN: 1468-036X</identifier><identifier>DOI: 10.1111/eufm.12058</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Dow Jones Indexes ; Forecasting ; Internet ; investor behaviour ; limited attention ; noise trader ; realised volatility ; search engine data ; Search engines ; Securities markets ; Stock market indexes ; Studies ; Volatility</subject><ispartof>European financial management : the journal of the European Financial Management Association, 2016-03, Vol.22 (2), p.171-192</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6368-44523c554da32a538a3429614e6d941e1b7a6d955a2a6422ce3f417818f4c0313</citedby><cites>FETCH-LOGICAL-c6368-44523c554da32a538a3429614e6d941e1b7a6d955a2a6422ce3f417818f4c0313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Feufm.12058$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Feufm.12058$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dimpfl, Thomas</creatorcontrib><creatorcontrib>Jank, Stephan</creatorcontrib><title>Can Internet Search Queries Help to Predict Stock Market Volatility?</title><title>European financial management : the journal of the European Financial Management Association</title><addtitle>Eur Financial Management</addtitle><description>We study the dynamics of stock market volatility and retail investors' attention to the stock market. The latter is measured by internet search queries related to the leading stock market index. We find a strong co‐movement of the Dow Jones' realised volatility and the volume of search queries for its name. Furthermore, search queries Granger‐cause volatility: a heightened number of searches today is followed by an increase in volatility tomorrow. Including search queries in autoregressive models of realised volatility improves volatility forecasts in‐sample, out‐of‐sample, for different forecasting horizons, and in particular in high‐volatility phases.</description><subject>Dow Jones Indexes</subject><subject>Forecasting</subject><subject>Internet</subject><subject>investor behaviour</subject><subject>limited attention</subject><subject>noise trader</subject><subject>realised volatility</subject><subject>search engine data</subject><subject>Search engines</subject><subject>Securities markets</subject><subject>Stock market indexes</subject><subject>Studies</subject><subject>Volatility</subject><issn>1354-7798</issn><issn>1468-036X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AiCs7pxU9Q8CJCZ_OenkSne4HNF3Q6dgkxe4rdunYmLbpvb-bUg4flkgfy-4eHfxAco7iF_DmHOl20EI6Z3AkaiHIZxYSPd_1MGI2ESOR-cODcLI5jyphsBNdtXYT9ogJbQBU-grbmLXyowWbgwh7ky7Aqw3sL08z456o083Co7dzb5zLXVZZn1eriMNhLde7g6OduBqPOzVO7Fw3uuv325SAynPhVKGWYGMboVBOsGZGaUJxwRIFPE4oAvQrtJ8Y01pxibICkFAmJZEpNTBBpBqebf5e2fK_BVWqROQN5rgsoa6eQFFIknHHq6ck_OitrW_jtFEowQRRLzLYqwaUgVCZrdbZRxpbOWUjV0mYLbVcKxWpdu1rXrr5r9xht8EeWw2qLVDejzvA3E20ymavg8y_je1ZcEMHUy21XjSftRLCricLkC8yikDk</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Dimpfl, Thomas</creator><creator>Jank, Stephan</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201603</creationdate><title>Can Internet Search Queries Help to Predict Stock Market Volatility?</title><author>Dimpfl, Thomas ; Jank, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6368-44523c554da32a538a3429614e6d941e1b7a6d955a2a6422ce3f417818f4c0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dow Jones Indexes</topic><topic>Forecasting</topic><topic>Internet</topic><topic>investor behaviour</topic><topic>limited attention</topic><topic>noise trader</topic><topic>realised volatility</topic><topic>search engine data</topic><topic>Search engines</topic><topic>Securities markets</topic><topic>Stock market indexes</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimpfl, Thomas</creatorcontrib><creatorcontrib>Jank, Stephan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>European financial management : the journal of the European Financial Management Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimpfl, Thomas</au><au>Jank, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Internet Search Queries Help to Predict Stock Market Volatility?</atitle><jtitle>European financial management : the journal of the European Financial Management Association</jtitle><addtitle>Eur Financial Management</addtitle><date>2016-03</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>171</spage><epage>192</epage><pages>171-192</pages><issn>1354-7798</issn><eissn>1468-036X</eissn><abstract>We study the dynamics of stock market volatility and retail investors' attention to the stock market. The latter is measured by internet search queries related to the leading stock market index. We find a strong co‐movement of the Dow Jones' realised volatility and the volume of search queries for its name. Furthermore, search queries Granger‐cause volatility: a heightened number of searches today is followed by an increase in volatility tomorrow. Including search queries in autoregressive models of realised volatility improves volatility forecasts in‐sample, out‐of‐sample, for different forecasting horizons, and in particular in high‐volatility phases.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/eufm.12058</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-7798
ispartof European financial management : the journal of the European Financial Management Association, 2016-03, Vol.22 (2), p.171-192
issn 1354-7798
1468-036X
language eng
recordid cdi_proquest_miscellaneous_1878796564
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Dow Jones Indexes
Forecasting
Internet
investor behaviour
limited attention
noise trader
realised volatility
search engine data
Search engines
Securities markets
Stock market indexes
Studies
Volatility
title Can Internet Search Queries Help to Predict Stock Market Volatility?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Internet%20Search%20Queries%20Help%20to%20Predict%20Stock%20Market%20Volatility?&rft.jtitle=European%20financial%20management%20:%20the%20journal%20of%20the%20European%20Financial%20Management%20Association&rft.au=Dimpfl,%20Thomas&rft.date=2016-03&rft.volume=22&rft.issue=2&rft.spage=171&rft.epage=192&rft.pages=171-192&rft.issn=1354-7798&rft.eissn=1468-036X&rft_id=info:doi/10.1111/eufm.12058&rft_dat=%3Cproquest_cross%3E1878796564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768734895&rft_id=info:pmid/&rfr_iscdi=true