SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS
This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable cond...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2016-06, Vol.32 (3), p.714-739 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 3 |
container_start_page | 714 |
container_title | Econometric theory |
container_volume | 32 |
creator | Jenish, Nazgul |
description | This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields. |
doi_str_mv | 10.1017/S0266466614000905 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878788371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466614000905</cupid><jstor_id>43947981</jstor_id><sourcerecordid>43947981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnP4BHoSCFy_VvCZNmmPZ4lbo1tF2eCxpm8rGts5kO_jf27IhosiD9w7fr8eH0D3gZ8DAXzLsMUYZY0AxxgL7F2gAlAmXEoYv0aCH3R6_RjfWrjEGT3AyQDxbhHkUxk4mZ9EiTMOZzNNo5MySsYydtyifOnI-TiZyniwzJ5WTVGZZkma36KpRG6vvzneIlq8yH03dOJlEozB2KxrQg1uBoqwWwOrS04L5jRKsYU0ZVIA9IroFZU2aQOmgLEvKqSJY-1B3REIpMDJETyffvWk_jtoeiu3KVnqzUTvdHm0BAe8mIBw66uMv6ro9ml33XQFceD7mwHpDOLEq01prdFPszWqrzGcBuOirLP5U2WkeTpq1PbTmW0CJoFwEfTI5e6ptaVb1u_4R_a_rF572eC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792507166</pqid></control><display><type>article</type><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Jenish, Nazgul</creator><creatorcontrib>Jenish, Nazgul</creatorcontrib><description>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466614000905</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Central limit theorem ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Generalized method of moments ; Random variables ; Regression analysis ; Studies ; Theorems</subject><ispartof>Econometric theory, 2016-06, Vol.32 (3), p.714-739</ispartof><rights>Copyright © Cambridge University Press 2014</rights><rights>Cambridge University Press 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</citedby><cites>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43947981$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466614000905/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Jenish, Nazgul</creatorcontrib><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</description><subject>Central limit theorem</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Generalized method of moments</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Theorems</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UM9LwzAUDqLgnP4BHoSCFy_VvCZNmmPZ4lbo1tF2eCxpm8rGts5kO_jf27IhosiD9w7fr8eH0D3gZ8DAXzLsMUYZY0AxxgL7F2gAlAmXEoYv0aCH3R6_RjfWrjEGT3AyQDxbhHkUxk4mZ9EiTMOZzNNo5MySsYydtyifOnI-TiZyniwzJ5WTVGZZkma36KpRG6vvzneIlq8yH03dOJlEozB2KxrQg1uBoqwWwOrS04L5jRKsYU0ZVIA9IroFZU2aQOmgLEvKqSJY-1B3REIpMDJETyffvWk_jtoeiu3KVnqzUTvdHm0BAe8mIBw66uMv6ro9ml33XQFceD7mwHpDOLEq01prdFPszWqrzGcBuOirLP5U2WkeTpq1PbTmW0CJoFwEfTI5e6ptaVb1u_4R_a_rF572eC4</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Jenish, Nazgul</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><author>Jenish, Nazgul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Central limit theorem</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Generalized method of moments</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenish, Nazgul</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenish, Nazgul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>32</volume><issue>3</issue><spage>714</spage><epage>739</epage><pages>714-739</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466614000905</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 2016-06, Vol.32 (3), p.714-739 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_1878788371 |
source | Cambridge Journals; JSTOR Archive Collection A-Z Listing |
subjects | Central limit theorem Econometrics Economic models Economic statistics Economic theory Generalized method of moments Random variables Regression analysis Studies Theorems |
title | SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATIAL%20SEMIPARAMETRIC%20MODEL%20WITH%20ENDOGENOUS%20REGRESSORS&rft.jtitle=Econometric%20theory&rft.au=Jenish,%20Nazgul&rft.date=2016-06-01&rft.volume=32&rft.issue=3&rft.spage=714&rft.epage=739&rft.pages=714-739&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466614000905&rft_dat=%3Cjstor_proqu%3E43947981%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792507166&rft_id=info:pmid/&rft_cupid=10_1017_S0266466614000905&rft_jstor_id=43947981&rfr_iscdi=true |