SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS

This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2016-06, Vol.32 (3), p.714-739
1. Verfasser: Jenish, Nazgul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 3
container_start_page 714
container_title Econometric theory
container_volume 32
creator Jenish, Nazgul
description This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.
doi_str_mv 10.1017/S0266466614000905
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878788371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466614000905</cupid><jstor_id>43947981</jstor_id><sourcerecordid>43947981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnP4BHoSCFy_VvCZNmmPZ4lbo1tF2eCxpm8rGts5kO_jf27IhosiD9w7fr8eH0D3gZ8DAXzLsMUYZY0AxxgL7F2gAlAmXEoYv0aCH3R6_RjfWrjEGT3AyQDxbhHkUxk4mZ9EiTMOZzNNo5MySsYydtyifOnI-TiZyniwzJ5WTVGZZkma36KpRG6vvzneIlq8yH03dOJlEozB2KxrQg1uBoqwWwOrS04L5jRKsYU0ZVIA9IroFZU2aQOmgLEvKqSJY-1B3REIpMDJETyffvWk_jtoeiu3KVnqzUTvdHm0BAe8mIBw66uMv6ro9ml33XQFceD7mwHpDOLEq01prdFPszWqrzGcBuOirLP5U2WkeTpq1PbTmW0CJoFwEfTI5e6ptaVb1u_4R_a_rF572eC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792507166</pqid></control><display><type>article</type><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Jenish, Nazgul</creator><creatorcontrib>Jenish, Nazgul</creatorcontrib><description>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466614000905</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Central limit theorem ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Generalized method of moments ; Random variables ; Regression analysis ; Studies ; Theorems</subject><ispartof>Econometric theory, 2016-06, Vol.32 (3), p.714-739</ispartof><rights>Copyright © Cambridge University Press 2014</rights><rights>Cambridge University Press 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</citedby><cites>FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43947981$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466614000905/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Jenish, Nazgul</creatorcontrib><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</description><subject>Central limit theorem</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Generalized method of moments</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Theorems</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UM9LwzAUDqLgnP4BHoSCFy_VvCZNmmPZ4lbo1tF2eCxpm8rGts5kO_jf27IhosiD9w7fr8eH0D3gZ8DAXzLsMUYZY0AxxgL7F2gAlAmXEoYv0aCH3R6_RjfWrjEGT3AyQDxbhHkUxk4mZ9EiTMOZzNNo5MySsYydtyifOnI-TiZyniwzJ5WTVGZZkma36KpRG6vvzneIlq8yH03dOJlEozB2KxrQg1uBoqwWwOrS04L5jRKsYU0ZVIA9IroFZU2aQOmgLEvKqSJY-1B3REIpMDJETyffvWk_jtoeiu3KVnqzUTvdHm0BAe8mIBw66uMv6ro9ml33XQFceD7mwHpDOLEq01prdFPszWqrzGcBuOirLP5U2WkeTpq1PbTmW0CJoFwEfTI5e6ptaVb1u_4R_a_rF572eC4</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Jenish, Nazgul</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</title><author>Jenish, Nazgul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-c1a46d916db2e965fa96f6fb8c102391021bd3f8ae8bbb474a30e51d5fa344163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Central limit theorem</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Generalized method of moments</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenish, Nazgul</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenish, Nazgul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>32</volume><issue>3</issue><spage>714</spage><epage>739</epage><pages>714-739</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>This paper proposes a semiparametric generalized method of moments estimator (GMM) estimator for a partially parametric spatial model with endogenous spatially dependent regressors. The finite-dimensional estimator is shown to be consistent and root-n asymptotically normal under some reasonable conditions. A spatial heteroscedasticity and autocorrelation consistent covariance estimator is constructed for the GMM estimator. The leading application is nonlinear spatial autoregressions, which arise in a wide range of strategic interaction models. To derive the asymptotic properties of the estimator, the paper also establishes a stochastic equicontinuity criterion and functional central limit theorem for near-epoch dependent random fields.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466614000905</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2016-06, Vol.32 (3), p.714-739
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_1878788371
source Cambridge Journals; JSTOR Archive Collection A-Z Listing
subjects Central limit theorem
Econometrics
Economic models
Economic statistics
Economic theory
Generalized method of moments
Random variables
Regression analysis
Studies
Theorems
title SPATIAL SEMIPARAMETRIC MODEL WITH ENDOGENOUS REGRESSORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATIAL%20SEMIPARAMETRIC%20MODEL%20WITH%20ENDOGENOUS%20REGRESSORS&rft.jtitle=Econometric%20theory&rft.au=Jenish,%20Nazgul&rft.date=2016-06-01&rft.volume=32&rft.issue=3&rft.spage=714&rft.epage=739&rft.pages=714-739&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466614000905&rft_dat=%3Cjstor_proqu%3E43947981%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792507166&rft_id=info:pmid/&rft_cupid=10_1017_S0266466614000905&rft_jstor_id=43947981&rfr_iscdi=true