Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter

Purpose To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2017-11, Vol.46 (5), p.1464-1473
Hauptverfasser: Elkady, Ahmed M., Cobzas, Dana, Sun, Hongfu, Blevins, Gregg, Wilman, Alan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1473
container_issue 5
container_start_page 1464
container_title Journal of magnetic resonance imaging
container_volume 46
creator Elkady, Ahmed M.
Cobzas, Dana
Sun, Hongfu
Blevins, Gregg
Wilman, Alan H.
description Purpose To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls. Materials and Methods R2*/QS maps were computed using a 4.7T 10‐echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing‐remitting (RR), 40 secondary‐progressive (SP), 13 primary‐progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t‐tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05). Results In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron‐associated volumes in MS patients and their effect size progressively increased with advanced phenotypes. Conclusion A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron‐associated sparsity and effect size. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1464–1473.
doi_str_mv 10.1002/jmri.25682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878183314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878183314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-c34b25dc9867eae090055db997f08fe6cdc71c8b4d68dad83ed390707d1152a53</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRi1ERUthww9AltggpJSxHSf2ElU8iloVIVhbjj0pvnJugp0U8u_r3hQWLFjNQ0dHo_kIecHgjAHwt7shhTMuG8UfkRMmOa-4VM3j0oMUFVPQHpOnOe8AQOtaPiHHXAlg0LQn5PeXNN4kzDncIg1p3FPr3DIs0c7hMKQxZ1rmOUwRaXYRyyZkOv3A_TivE2aa8BZtRE-7lebJpozURVuUfXCbZuypR5zoTbIrHew8Y3pGjnobMz5_qKfk-4f3384_VZfXHy_O311WrpaaV07UHZfeadW0aBE0gJS-07rtQfXYOO9a5lRX-0Z565VALzS00HpWPmGlOCWvN--Uxp8L5tkMITuM0e5xXLJhqlVMCcHqgr76B92NS9qX6wzTEgTwmkOh3mzU4TUJezOlMNi0GgbmPg9zn4c55FHglw_KpRvQ_0X_BFAAtgG_QsT1Pyrz-errxSa9AwLamAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950302420</pqid></control><display><type>article</type><title>Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Elkady, Ahmed M. ; Cobzas, Dana ; Sun, Hongfu ; Blevins, Gregg ; Wilman, Alan H.</creator><creatorcontrib>Elkady, Ahmed M. ; Cobzas, Dana ; Sun, Hongfu ; Blevins, Gregg ; Wilman, Alan H.</creatorcontrib><description>Purpose To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls. Materials and Methods R2*/QS maps were computed using a 4.7T 10‐echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing‐remitting (RR), 40 secondary‐progressive (SP), 13 primary‐progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t‐tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05). Results In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron‐associated volumes in MS patients and their effect size progressively increased with advanced phenotypes. Conclusion A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron‐associated sparsity and effect size. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1464–1473.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25682</identifier><identifier>PMID: 28301067</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Adult ; Automatic Data Processing ; Brain - diagnostic imaging ; brain iron ; Brain Mapping ; Case-Control Studies ; Caudate nucleus ; Classification ; deep gray matter ; Demyelination ; Female ; Globus pallidus ; Gray Matter - diagnostic imaging ; Gray Matter - physiopathology ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Iron ; Iron - chemistry ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Multiple sclerosis ; Multiple Sclerosis - diagnostic imaging ; Multiple Sclerosis - physiopathology ; Myelin ; Nuclei ; Patients ; Phenotype ; Putamen ; quantitative susceptibility mapping ; sparse classification ; Substantia grisea ; Thalamus</subject><ispartof>Journal of magnetic resonance imaging, 2017-11, Vol.46 (5), p.1464-1473</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-c34b25dc9867eae090055db997f08fe6cdc71c8b4d68dad83ed390707d1152a53</citedby><cites>FETCH-LOGICAL-c4592-c34b25dc9867eae090055db997f08fe6cdc71c8b4d68dad83ed390707d1152a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.25682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.25682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28301067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elkady, Ahmed M.</creatorcontrib><creatorcontrib>Cobzas, Dana</creatorcontrib><creatorcontrib>Sun, Hongfu</creatorcontrib><creatorcontrib>Blevins, Gregg</creatorcontrib><creatorcontrib>Wilman, Alan H.</creatorcontrib><title>Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Purpose To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls. Materials and Methods R2*/QS maps were computed using a 4.7T 10‐echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing‐remitting (RR), 40 secondary‐progressive (SP), 13 primary‐progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t‐tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05). Results In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron‐associated volumes in MS patients and their effect size progressively increased with advanced phenotypes. Conclusion A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron‐associated sparsity and effect size. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1464–1473.</description><subject>Accumulation</subject><subject>Adult</subject><subject>Automatic Data Processing</subject><subject>Brain - diagnostic imaging</subject><subject>brain iron</subject><subject>Brain Mapping</subject><subject>Case-Control Studies</subject><subject>Caudate nucleus</subject><subject>Classification</subject><subject>deep gray matter</subject><subject>Demyelination</subject><subject>Female</subject><subject>Globus pallidus</subject><subject>Gray Matter - diagnostic imaging</subject><subject>Gray Matter - physiopathology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>Myelin</subject><subject>Nuclei</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Putamen</subject><subject>quantitative susceptibility mapping</subject><subject>sparse classification</subject><subject>Substantia grisea</subject><subject>Thalamus</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQRi1ERUthww9AltggpJSxHSf2ElU8iloVIVhbjj0pvnJugp0U8u_r3hQWLFjNQ0dHo_kIecHgjAHwt7shhTMuG8UfkRMmOa-4VM3j0oMUFVPQHpOnOe8AQOtaPiHHXAlg0LQn5PeXNN4kzDncIg1p3FPr3DIs0c7hMKQxZ1rmOUwRaXYRyyZkOv3A_TivE2aa8BZtRE-7lebJpozURVuUfXCbZuypR5zoTbIrHew8Y3pGjnobMz5_qKfk-4f3384_VZfXHy_O311WrpaaV07UHZfeadW0aBE0gJS-07rtQfXYOO9a5lRX-0Z565VALzS00HpWPmGlOCWvN--Uxp8L5tkMITuM0e5xXLJhqlVMCcHqgr76B92NS9qX6wzTEgTwmkOh3mzU4TUJezOlMNi0GgbmPg9zn4c55FHglw_KpRvQ_0X_BFAAtgG_QsT1Pyrz-errxSa9AwLamAQ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Elkady, Ahmed M.</creator><creator>Cobzas, Dana</creator><creator>Sun, Hongfu</creator><creator>Blevins, Gregg</creator><creator>Wilman, Alan H.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter</title><author>Elkady, Ahmed M. ; Cobzas, Dana ; Sun, Hongfu ; Blevins, Gregg ; Wilman, Alan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-c34b25dc9867eae090055db997f08fe6cdc71c8b4d68dad83ed390707d1152a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulation</topic><topic>Adult</topic><topic>Automatic Data Processing</topic><topic>Brain - diagnostic imaging</topic><topic>brain iron</topic><topic>Brain Mapping</topic><topic>Case-Control Studies</topic><topic>Caudate nucleus</topic><topic>Classification</topic><topic>deep gray matter</topic><topic>Demyelination</topic><topic>Female</topic><topic>Globus pallidus</topic><topic>Gray Matter - diagnostic imaging</topic><topic>Gray Matter - physiopathology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>Myelin</topic><topic>Nuclei</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Putamen</topic><topic>quantitative susceptibility mapping</topic><topic>sparse classification</topic><topic>Substantia grisea</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elkady, Ahmed M.</creatorcontrib><creatorcontrib>Cobzas, Dana</creatorcontrib><creatorcontrib>Sun, Hongfu</creatorcontrib><creatorcontrib>Blevins, Gregg</creatorcontrib><creatorcontrib>Wilman, Alan H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elkady, Ahmed M.</au><au>Cobzas, Dana</au><au>Sun, Hongfu</au><au>Blevins, Gregg</au><au>Wilman, Alan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2017-11</date><risdate>2017</risdate><volume>46</volume><issue>5</issue><spage>1464</spage><epage>1473</epage><pages>1464-1473</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To create an automated framework for localized analysis of deep gray matter (DGM) iron accumulation and demyelination using sparse classification by combining quantitative susceptibility (QS) and transverse relaxation rate (R2*) maps, for evaluation of DGM in multiple sclerosis (MS) phenotypes relative to healthy controls. Materials and Methods R2*/QS maps were computed using a 4.7T 10‐echo gradient echo acquisition from 16 clinically isolated syndrome (CIS), 41 relapsing‐remitting (RR), 40 secondary‐progressive (SP), 13 primary‐progressive (PP) MS patients, and 75 controls. Sparse classification for R2*/QS maps of segmented caudate nucleus (CN), putamen (PU), thalamus (TH), and globus pallidus (GP) structures produced localized maps of iron/myelin in MS patients relative to controls. Paired t‐tests, with age as a covariate, were used to test for statistical significance (P ≤ 0.05). Results In addition to DGM structures found significantly different in patients compared to controls using whole region analysis, singular sparse analysis found significant results in RRMS PU R2* (P = 0.03), TH R2* (P = 0.04), CN QS (P = 0.04); in SPMS CN R2* (P = 0.04), GP R2* (P = 0.05); and in PPMS CN R2* (P = 0.04), TH QS (P = 0.04). All sparse regions were found to conform to an iron accumulation pattern of changes in R2*/QS, while none conformed to demyelination. Intersection of sparse R2*/QS regions also resulted in RRMS CN R2* becoming significant, while RRMS R2* TH and PPMS QS TH becoming insignificant. Common iron‐associated volumes in MS patients and their effect size progressively increased with advanced phenotypes. Conclusion A localized technique for identifying sparse regions indicative of iron or myelin in the DGM was developed. Progressive iron accumulation with advanced MS phenotypes was demonstrated, as indicated by iron‐associated sparsity and effect size. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1464–1473.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28301067</pmid><doi>10.1002/jmri.25682</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2017-11, Vol.46 (5), p.1464-1473
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_1878183314
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accumulation
Adult
Automatic Data Processing
Brain - diagnostic imaging
brain iron
Brain Mapping
Case-Control Studies
Caudate nucleus
Classification
deep gray matter
Demyelination
Female
Globus pallidus
Gray Matter - diagnostic imaging
Gray Matter - physiopathology
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Iron
Iron - chemistry
Magnetic Resonance Imaging
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - physiopathology
Myelin
Nuclei
Patients
Phenotype
Putamen
quantitative susceptibility mapping
sparse classification
Substantia grisea
Thalamus
title Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20iron%20accumulation%20across%20multiple%20sclerosis%20phenotypes%20revealed%20by%20sparse%20classification%20of%20deep%20gray%20matter&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Elkady,%20Ahmed%20M.&rft.date=2017-11&rft.volume=46&rft.issue=5&rft.spage=1464&rft.epage=1473&rft.pages=1464-1473&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25682&rft_dat=%3Cproquest_cross%3E1878183314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950302420&rft_id=info:pmid/28301067&rfr_iscdi=true