Start-up inertia as an origin for heterogeneous flow

For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-02, Vol.95 (2-1), p.022608-022608, Article 022608
Hauptverfasser: Korhonen, Marko, Mohtaschemi, Mikael, Puisto, Antti, Illa, Xavier, Alava, Mikko J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 022608
container_issue 2-1
container_start_page 022608
container_title Physical review. E
container_volume 95
creator Korhonen, Marko
Mohtaschemi, Mikael
Puisto, Antti
Illa, Xavier
Alava, Mikko J
description For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using computational fluid dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions.
doi_str_mv 10.1103/PhysRevE.95.022608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1878179271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878179271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-7c2e38c59c170e09fa59e5ccef9cc4f6f42ef7af546b02e2798ed736c0ce2d113</originalsourceid><addsrcrecordid>eNo9kE1PAjEYhBujEYL8AQ-mRy-Lb9vttj0agmhCovHj3JTyFtYsu9juavj3inycZg4zk8lDyDWDEWMg7l5W2_SK35ORkSPgvAB9Rvo8V5ABSHF-8rnskWFKnwDACjCK8UvS45obpQvdJ_lb62KbdRta1hjb0lGXqKtpE8tlWdPQRLrCFmOzxBqbLtFQNT9X5CK4KuHwoAPy8TB5Hz9ms-fp0_h-lnkBos2U5yi0l8YzBQgmOGlQeo_BeJ-HIuQcg3JB5sUcOHJlNC6UKDx45AvGxIDc7nc3sfnqMLV2XSaPVeX-v1imlWbKcLWL8n3UxyaliMFuYrl2cWsZ2B0wewRmjbR7YH-lm8N-N1_j4lQ54hG_YT9n6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878179271</pqid></control><display><type>article</type><title>Start-up inertia as an origin for heterogeneous flow</title><source>American Physical Society Journals</source><creator>Korhonen, Marko ; Mohtaschemi, Mikael ; Puisto, Antti ; Illa, Xavier ; Alava, Mikko J</creator><creatorcontrib>Korhonen, Marko ; Mohtaschemi, Mikael ; Puisto, Antti ; Illa, Xavier ; Alava, Mikko J</creatorcontrib><description>For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using computational fluid dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.95.022608</identifier><identifier>PMID: 28297868</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-02, Vol.95 (2-1), p.022608-022608, Article 022608</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-7c2e38c59c170e09fa59e5ccef9cc4f6f42ef7af546b02e2798ed736c0ce2d113</citedby><cites>FETCH-LOGICAL-c303t-7c2e38c59c170e09fa59e5ccef9cc4f6f42ef7af546b02e2798ed736c0ce2d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28297868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korhonen, Marko</creatorcontrib><creatorcontrib>Mohtaschemi, Mikael</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Illa, Xavier</creatorcontrib><creatorcontrib>Alava, Mikko J</creatorcontrib><title>Start-up inertia as an origin for heterogeneous flow</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using computational fluid dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEYhBujEYL8AQ-mRy-Lb9vttj0agmhCovHj3JTyFtYsu9juavj3inycZg4zk8lDyDWDEWMg7l5W2_SK35ORkSPgvAB9Rvo8V5ABSHF-8rnskWFKnwDACjCK8UvS45obpQvdJ_lb62KbdRta1hjb0lGXqKtpE8tlWdPQRLrCFmOzxBqbLtFQNT9X5CK4KuHwoAPy8TB5Hz9ms-fp0_h-lnkBos2U5yi0l8YzBQgmOGlQeo_BeJ-HIuQcg3JB5sUcOHJlNC6UKDx45AvGxIDc7nc3sfnqMLV2XSaPVeX-v1imlWbKcLWL8n3UxyaliMFuYrl2cWsZ2B0wewRmjbR7YH-lm8N-N1_j4lQ54hG_YT9n6w</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Korhonen, Marko</creator><creator>Mohtaschemi, Mikael</creator><creator>Puisto, Antti</creator><creator>Illa, Xavier</creator><creator>Alava, Mikko J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Start-up inertia as an origin for heterogeneous flow</title><author>Korhonen, Marko ; Mohtaschemi, Mikael ; Puisto, Antti ; Illa, Xavier ; Alava, Mikko J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-7c2e38c59c170e09fa59e5ccef9cc4f6f42ef7af546b02e2798ed736c0ce2d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korhonen, Marko</creatorcontrib><creatorcontrib>Mohtaschemi, Mikael</creatorcontrib><creatorcontrib>Puisto, Antti</creatorcontrib><creatorcontrib>Illa, Xavier</creatorcontrib><creatorcontrib>Alava, Mikko J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korhonen, Marko</au><au>Mohtaschemi, Mikael</au><au>Puisto, Antti</au><au>Illa, Xavier</au><au>Alava, Mikko J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Start-up inertia as an origin for heterogeneous flow</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-02</date><risdate>2017</risdate><volume>95</volume><issue>2-1</issue><spage>022608</spage><epage>022608</epage><pages>022608-022608</pages><artnum>022608</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>For quite some time nonmonotonic flow curve was thought to be a requirement for shear banded flows in complex fluids. Thus, in simple yield stress fluids shear banding was considered to be absent. Recent spatially resolved rheological experiments have found simple yield stress fluids to exhibit shear banded flow profiles. One proposed mechanism for the initiation of such transient shear banding process has been a small stress heterogeneity rising from the experimental device geometry. Here, using computational fluid dynamics methods, we show that transient shear banding can be initialized even under homogeneous stress conditions by the fluid start-up inertia, and that such mechanism indeed is present in realistic experimental conditions.</abstract><cop>United States</cop><pmid>28297868</pmid><doi>10.1103/PhysRevE.95.022608</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-02, Vol.95 (2-1), p.022608-022608, Article 022608
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1878179271
source American Physical Society Journals
title Start-up inertia as an origin for heterogeneous flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Start-up%20inertia%20as%20an%20origin%20for%20heterogeneous%20flow&rft.jtitle=Physical%20review.%20E&rft.au=Korhonen,%20Marko&rft.date=2017-02&rft.volume=95&rft.issue=2-1&rft.spage=022608&rft.epage=022608&rft.pages=022608-022608&rft.artnum=022608&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.95.022608&rft_dat=%3Cproquest_cross%3E1878179271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878179271&rft_id=info:pmid/28297868&rfr_iscdi=true