Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I
In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoid...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2017-09, Vol.161 (1), p.56-74 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | Physiologia plantarum |
container_volume | 161 |
creator | Takagi, Daisuke Ishizaki, Kimitsune Hanawa, Hitomi Mabuchi, Tomohito Shimakawa, Ginga Yamamoto, Hiroshi Miyake, Chikahiro |
description | In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms. |
doi_str_mv | 10.1111/ppl.12562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877854973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877854973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EotPCghdAltjAIq0vuZkdKhQqjcQsYB157JMZV0mc2k5LXpDn4kxmYFEJL-yFv_OdY_-EvOHskuO6GsfukouiFM_IikulMsmK_DlZMSZ5piSvzsh5jHeM8bLk4iU5E7VQRc7Zivz-7B4gRJdm6lsaU9AJdg4ibX2gEI0e3bCjAbRJCFL_a97BQOMI5gCNwdsJb_xAH13au4GOe598nGOCnt5S3Xus7vRg6Yh7ih_ppmIMNc7qpeyEuoMLAtxPDmeBpbvuOnhwiKFi0bph77ZuKXva6RV50eouwuvTeUF-3nz5cf0tW3__env9aZ2ZnCuRlVurZVVylVvIK6sLa1QtqtZoznRZaslaUFbrorZcSSlzIfDLWluYUtdVKeQFeX_04svvJ4ip6V000OHjwE-x4XVV1UWuKonouyfonZ_CgNM1OIqSiuVMIfXhSJngYwzQNmNwvQ5zw1lzCLfBcJslXGTfnozTtgf7j_ybJgJXR-DRdTD_39RsNuuj8g8IZ7OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929390409</pqid></control><display><type>article</type><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</creator><creatorcontrib>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</creatorcontrib><description>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12562</identifier><identifier>PMID: 28295410</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Angiosperms ; Biodiversity ; Bryophyta - drug effects ; Bryophyta - physiology ; Carbon fixation ; Chlorophyll ; Chlorophyll - metabolism ; Cycadopsida - drug effects ; Cycadopsida - physiology ; Defects ; Electron Transport - drug effects ; Embryophyta - drug effects ; Embryophyta - metabolism ; Ferns ; Ferns - drug effects ; Ferns - physiology ; Gymnosperms ; Helianthus - drug effects ; Helianthus - physiology ; Illumination ; Kinetics ; Light ; Mosses ; Oxidation ; Oxidation-Reduction ; Paraquat - pharmacology ; Photochemical Processes - drug effects ; Photoinhibition ; Photosystem I ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Plant species ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Time Factors ; Zea mays - drug effects ; Zea mays - physiology</subject><ispartof>Physiologia plantarum, 2017-09, Vol.161 (1), p.56-74</ispartof><rights>2017 Scandinavian Plant Physiology Society</rights><rights>2017 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</citedby><cites>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12562$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12562$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Daisuke</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Hanawa, Hitomi</creatorcontrib><creatorcontrib>Mabuchi, Tomohito</creatorcontrib><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</description><subject>Angiosperms</subject><subject>Biodiversity</subject><subject>Bryophyta - drug effects</subject><subject>Bryophyta - physiology</subject><subject>Carbon fixation</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Cycadopsida - drug effects</subject><subject>Cycadopsida - physiology</subject><subject>Defects</subject><subject>Electron Transport - drug effects</subject><subject>Embryophyta - drug effects</subject><subject>Embryophyta - metabolism</subject><subject>Ferns</subject><subject>Ferns - drug effects</subject><subject>Ferns - physiology</subject><subject>Gymnosperms</subject><subject>Helianthus - drug effects</subject><subject>Helianthus - physiology</subject><subject>Illumination</subject><subject>Kinetics</subject><subject>Light</subject><subject>Mosses</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Paraquat - pharmacology</subject><subject>Photochemical Processes - drug effects</subject><subject>Photoinhibition</subject><subject>Photosystem I</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Plant species</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Time Factors</subject><subject>Zea mays - drug effects</subject><subject>Zea mays - physiology</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhi0EotPCghdAltjAIq0vuZkdKhQqjcQsYB157JMZV0mc2k5LXpDn4kxmYFEJL-yFv_OdY_-EvOHskuO6GsfukouiFM_IikulMsmK_DlZMSZ5piSvzsh5jHeM8bLk4iU5E7VQRc7Zivz-7B4gRJdm6lsaU9AJdg4ibX2gEI0e3bCjAbRJCFL_a97BQOMI5gCNwdsJb_xAH13au4GOe598nGOCnt5S3Xus7vRg6Yh7ih_ppmIMNc7qpeyEuoMLAtxPDmeBpbvuOnhwiKFi0bph77ZuKXva6RV50eouwuvTeUF-3nz5cf0tW3__env9aZ2ZnCuRlVurZVVylVvIK6sLa1QtqtZoznRZaslaUFbrorZcSSlzIfDLWluYUtdVKeQFeX_04svvJ4ip6V000OHjwE-x4XVV1UWuKonouyfonZ_CgNM1OIqSiuVMIfXhSJngYwzQNmNwvQ5zw1lzCLfBcJslXGTfnozTtgf7j_ybJgJXR-DRdTD_39RsNuuj8g8IZ7OA</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Takagi, Daisuke</creator><creator>Ishizaki, Kimitsune</creator><creator>Hanawa, Hitomi</creator><creator>Mabuchi, Tomohito</creator><creator>Shimakawa, Ginga</creator><creator>Yamamoto, Hiroshi</creator><creator>Miyake, Chikahiro</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><author>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiosperms</topic><topic>Biodiversity</topic><topic>Bryophyta - drug effects</topic><topic>Bryophyta - physiology</topic><topic>Carbon fixation</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Cycadopsida - drug effects</topic><topic>Cycadopsida - physiology</topic><topic>Defects</topic><topic>Electron Transport - drug effects</topic><topic>Embryophyta - drug effects</topic><topic>Embryophyta - metabolism</topic><topic>Ferns</topic><topic>Ferns - drug effects</topic><topic>Ferns - physiology</topic><topic>Gymnosperms</topic><topic>Helianthus - drug effects</topic><topic>Helianthus - physiology</topic><topic>Illumination</topic><topic>Kinetics</topic><topic>Light</topic><topic>Mosses</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Paraquat - pharmacology</topic><topic>Photochemical Processes - drug effects</topic><topic>Photoinhibition</topic><topic>Photosystem I</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Plant species</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Time Factors</topic><topic>Zea mays - drug effects</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Daisuke</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Hanawa, Hitomi</creatorcontrib><creatorcontrib>Mabuchi, Tomohito</creatorcontrib><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Daisuke</au><au>Ishizaki, Kimitsune</au><au>Hanawa, Hitomi</au><au>Mabuchi, Tomohito</au><au>Shimakawa, Ginga</au><au>Yamamoto, Hiroshi</au><au>Miyake, Chikahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2017-09</date><risdate>2017</risdate><volume>161</volume><issue>1</issue><spage>56</spage><epage>74</epage><pages>56-74</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28295410</pmid><doi>10.1111/ppl.12562</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2017-09, Vol.161 (1), p.56-74 |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877854973 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Angiosperms Biodiversity Bryophyta - drug effects Bryophyta - physiology Carbon fixation Chlorophyll Chlorophyll - metabolism Cycadopsida - drug effects Cycadopsida - physiology Defects Electron Transport - drug effects Embryophyta - drug effects Embryophyta - metabolism Ferns Ferns - drug effects Ferns - physiology Gymnosperms Helianthus - drug effects Helianthus - physiology Illumination Kinetics Light Mosses Oxidation Oxidation-Reduction Paraquat - pharmacology Photochemical Processes - drug effects Photoinhibition Photosystem I Photosystem I Protein Complex - metabolism Photosystem II Plant species Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Time Factors Zea mays - drug effects Zea mays - physiology |
title | Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20of%20strategies%20for%20escaping%20reactive%20oxygen%20species%20production%20within%20photosystem%20I%20among%20land%20plants:%20P700%20oxidation%20system%20is%20prerequisite%20for%20alleviating%20photoinhibition%20in%20photosystem%20I&rft.jtitle=Physiologia%20plantarum&rft.au=Takagi,%20Daisuke&rft.date=2017-09&rft.volume=161&rft.issue=1&rft.spage=56&rft.epage=74&rft.pages=56-74&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12562&rft_dat=%3Cproquest_cross%3E1877854973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929390409&rft_id=info:pmid/28295410&rfr_iscdi=true |