Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I

In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2017-09, Vol.161 (1), p.56-74
Hauptverfasser: Takagi, Daisuke, Ishizaki, Kimitsune, Hanawa, Hitomi, Mabuchi, Tomohito, Shimakawa, Ginga, Yamamoto, Hiroshi, Miyake, Chikahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 56
container_title Physiologia plantarum
container_volume 161
creator Takagi, Daisuke
Ishizaki, Kimitsune
Hanawa, Hitomi
Mabuchi, Tomohito
Shimakawa, Ginga
Yamamoto, Hiroshi
Miyake, Chikahiro
description In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.
doi_str_mv 10.1111/ppl.12562
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877854973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877854973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EotPCghdAltjAIq0vuZkdKhQqjcQsYB157JMZV0mc2k5LXpDn4kxmYFEJL-yFv_OdY_-EvOHskuO6GsfukouiFM_IikulMsmK_DlZMSZ5piSvzsh5jHeM8bLk4iU5E7VQRc7Zivz-7B4gRJdm6lsaU9AJdg4ibX2gEI0e3bCjAbRJCFL_a97BQOMI5gCNwdsJb_xAH13au4GOe598nGOCnt5S3Xus7vRg6Yh7ih_ppmIMNc7qpeyEuoMLAtxPDmeBpbvuOnhwiKFi0bph77ZuKXva6RV50eouwuvTeUF-3nz5cf0tW3__env9aZ2ZnCuRlVurZVVylVvIK6sLa1QtqtZoznRZaslaUFbrorZcSSlzIfDLWluYUtdVKeQFeX_04svvJ4ip6V000OHjwE-x4XVV1UWuKonouyfonZ_CgNM1OIqSiuVMIfXhSJngYwzQNmNwvQ5zw1lzCLfBcJslXGTfnozTtgf7j_ybJgJXR-DRdTD_39RsNuuj8g8IZ7OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929390409</pqid></control><display><type>article</type><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</creator><creatorcontrib>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</creatorcontrib><description>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12562</identifier><identifier>PMID: 28295410</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Angiosperms ; Biodiversity ; Bryophyta - drug effects ; Bryophyta - physiology ; Carbon fixation ; Chlorophyll ; Chlorophyll - metabolism ; Cycadopsida - drug effects ; Cycadopsida - physiology ; Defects ; Electron Transport - drug effects ; Embryophyta - drug effects ; Embryophyta - metabolism ; Ferns ; Ferns - drug effects ; Ferns - physiology ; Gymnosperms ; Helianthus - drug effects ; Helianthus - physiology ; Illumination ; Kinetics ; Light ; Mosses ; Oxidation ; Oxidation-Reduction ; Paraquat - pharmacology ; Photochemical Processes - drug effects ; Photoinhibition ; Photosystem I ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Plant species ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Time Factors ; Zea mays - drug effects ; Zea mays - physiology</subject><ispartof>Physiologia plantarum, 2017-09, Vol.161 (1), p.56-74</ispartof><rights>2017 Scandinavian Plant Physiology Society</rights><rights>2017 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</citedby><cites>FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12562$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12562$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Daisuke</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Hanawa, Hitomi</creatorcontrib><creatorcontrib>Mabuchi, Tomohito</creatorcontrib><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</description><subject>Angiosperms</subject><subject>Biodiversity</subject><subject>Bryophyta - drug effects</subject><subject>Bryophyta - physiology</subject><subject>Carbon fixation</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Cycadopsida - drug effects</subject><subject>Cycadopsida - physiology</subject><subject>Defects</subject><subject>Electron Transport - drug effects</subject><subject>Embryophyta - drug effects</subject><subject>Embryophyta - metabolism</subject><subject>Ferns</subject><subject>Ferns - drug effects</subject><subject>Ferns - physiology</subject><subject>Gymnosperms</subject><subject>Helianthus - drug effects</subject><subject>Helianthus - physiology</subject><subject>Illumination</subject><subject>Kinetics</subject><subject>Light</subject><subject>Mosses</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Paraquat - pharmacology</subject><subject>Photochemical Processes - drug effects</subject><subject>Photoinhibition</subject><subject>Photosystem I</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Plant species</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Time Factors</subject><subject>Zea mays - drug effects</subject><subject>Zea mays - physiology</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhi0EotPCghdAltjAIq0vuZkdKhQqjcQsYB157JMZV0mc2k5LXpDn4kxmYFEJL-yFv_OdY_-EvOHskuO6GsfukouiFM_IikulMsmK_DlZMSZ5piSvzsh5jHeM8bLk4iU5E7VQRc7Zivz-7B4gRJdm6lsaU9AJdg4ibX2gEI0e3bCjAbRJCFL_a97BQOMI5gCNwdsJb_xAH13au4GOe598nGOCnt5S3Xus7vRg6Yh7ih_ppmIMNc7qpeyEuoMLAtxPDmeBpbvuOnhwiKFi0bph77ZuKXva6RV50eouwuvTeUF-3nz5cf0tW3__env9aZ2ZnCuRlVurZVVylVvIK6sLa1QtqtZoznRZaslaUFbrorZcSSlzIfDLWluYUtdVKeQFeX_04svvJ4ip6V000OHjwE-x4XVV1UWuKonouyfonZ_CgNM1OIqSiuVMIfXhSJngYwzQNmNwvQ5zw1lzCLfBcJslXGTfnozTtgf7j_ybJgJXR-DRdTD_39RsNuuj8g8IZ7OA</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Takagi, Daisuke</creator><creator>Ishizaki, Kimitsune</creator><creator>Hanawa, Hitomi</creator><creator>Mabuchi, Tomohito</creator><creator>Shimakawa, Ginga</creator><creator>Yamamoto, Hiroshi</creator><creator>Miyake, Chikahiro</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</title><author>Takagi, Daisuke ; Ishizaki, Kimitsune ; Hanawa, Hitomi ; Mabuchi, Tomohito ; Shimakawa, Ginga ; Yamamoto, Hiroshi ; Miyake, Chikahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-6bda376194de47da5dc9827fca10a66a30fe9daa58d19333422166fd5c6a87623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiosperms</topic><topic>Biodiversity</topic><topic>Bryophyta - drug effects</topic><topic>Bryophyta - physiology</topic><topic>Carbon fixation</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Cycadopsida - drug effects</topic><topic>Cycadopsida - physiology</topic><topic>Defects</topic><topic>Electron Transport - drug effects</topic><topic>Embryophyta - drug effects</topic><topic>Embryophyta - metabolism</topic><topic>Ferns</topic><topic>Ferns - drug effects</topic><topic>Ferns - physiology</topic><topic>Gymnosperms</topic><topic>Helianthus - drug effects</topic><topic>Helianthus - physiology</topic><topic>Illumination</topic><topic>Kinetics</topic><topic>Light</topic><topic>Mosses</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Paraquat - pharmacology</topic><topic>Photochemical Processes - drug effects</topic><topic>Photoinhibition</topic><topic>Photosystem I</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Plant species</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Time Factors</topic><topic>Zea mays - drug effects</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Daisuke</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Hanawa, Hitomi</creatorcontrib><creatorcontrib>Mabuchi, Tomohito</creatorcontrib><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Daisuke</au><au>Ishizaki, Kimitsune</au><au>Hanawa, Hitomi</au><au>Mabuchi, Tomohito</au><au>Shimakawa, Ginga</au><au>Yamamoto, Hiroshi</au><au>Miyake, Chikahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2017-09</date><risdate>2017</risdate><volume>161</volume><issue>1</issue><spage>56</spage><epage>74</epage><pages>56-74</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core‐complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short‐pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination‐induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>28295410</pmid><doi>10.1111/ppl.12562</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2017-09, Vol.161 (1), p.56-74
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_1877854973
source MEDLINE; Access via Wiley Online Library
subjects Angiosperms
Biodiversity
Bryophyta - drug effects
Bryophyta - physiology
Carbon fixation
Chlorophyll
Chlorophyll - metabolism
Cycadopsida - drug effects
Cycadopsida - physiology
Defects
Electron Transport - drug effects
Embryophyta - drug effects
Embryophyta - metabolism
Ferns
Ferns - drug effects
Ferns - physiology
Gymnosperms
Helianthus - drug effects
Helianthus - physiology
Illumination
Kinetics
Light
Mosses
Oxidation
Oxidation-Reduction
Paraquat - pharmacology
Photochemical Processes - drug effects
Photoinhibition
Photosystem I
Photosystem I Protein Complex - metabolism
Photosystem II
Plant species
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Time Factors
Zea mays - drug effects
Zea mays - physiology
title Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20of%20strategies%20for%20escaping%20reactive%20oxygen%20species%20production%20within%20photosystem%20I%20among%20land%20plants:%20P700%20oxidation%20system%20is%20prerequisite%20for%20alleviating%20photoinhibition%20in%20photosystem%20I&rft.jtitle=Physiologia%20plantarum&rft.au=Takagi,%20Daisuke&rft.date=2017-09&rft.volume=161&rft.issue=1&rft.spage=56&rft.epage=74&rft.pages=56-74&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12562&rft_dat=%3Cproquest_cross%3E1877854973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929390409&rft_id=info:pmid/28295410&rfr_iscdi=true