Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass

Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical nutrition 2017-07, Vol.71 (7), p.896-903
Hauptverfasser: Shirakawa, J, De Jesus, D F, Kulkarni, R N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903
container_issue 7
container_start_page 896
container_title European journal of clinical nutrition
container_volume 71
creator Shirakawa, J
De Jesus, D F
Kulkarni, R N
description Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance and improve β-cell function. Although the effects of insulin secretion on metabolic organs such as liver, skeletal muscle and adipose is directly relevant for improving glucose uptake and reduce hyperglycemia, the ability of pancreatic β-cells to crosstalk with multiple non-metabolic tissues is providing novel insights into potential opportunities for improving β-cell function and/or mass that could have beneficial effects in patients with diabetes. For example, the role of the gastrointestinal system in the regulation of β-cell biology is well recognized and has been exploited clinically to develop incretin-related antidiabetic agents. The microbiome and the immune system are emerging as important players in regulating β-cell function and mass. The rich innervation of islet cells indicates it is a prime organ for regulation by the nervous system. In this review, we discuss the potential implications of signals from these organ systems as well as those from bone, placenta, kidney, thyroid, endothelial cells, reproductive organs and adrenal and pituitary glands that can directly impact β-cell biology. An added layer of complexity is the limited data regarding the relative relevance of one or more of these systems in different ethnic populations. It is evident that better understanding of this paradigm would provide clues to enhance β-cell function and/or mass in vivo in the long-term goal of treating or curing patients with diabetes.
doi_str_mv 10.1038/ejcn.2017.13
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877854130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877854130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-707b23450c769ffb5a7a93f0303ce47b57b5dfaa7947f0d1b57401463acffd053</originalsourceid><addsrcrecordid>eNptkMFqGzEURUVoSFwnu66LoJssOu7TSBp5lsU4TSCQTbIMQtZI9rgzkitpSvtb-ZB8UzS1k0AoPBA8Ha6uDkKfCMwI0Pk3s9VuVgIRM0KP0IQwURW8YvABTaDmrKAA4hR9jHELkC9FeYJOy3lZMyJggh6Wf3adD61b49YlEwof1sphHXyMSXU_cfJ4cNr_NgH3Rm-Ua2MfcdqohINZD51KBj89Ftp0HbaZTK13WLkG9yrGM3RsVRfN-eGcovvL5d3iqri5_XG9-H5TaMpFKgSIVUkZBy2q2toVV0LV1AIFqg0TK56nsUqJmgkLDckLlv9SUaWtbYDTKbrY5-6C_zWYmGTfxrGScsYPUZK5EHPOSA6coi_v0K0fgsvtZFkRzsu6pHWmvu6pfyKCsXIX2l6Fv5KAHLXLUbsctUtCM_75EDqsetO8wi-eM1DsgbgbXZvw9up_A58BvjmN-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615529239</pqid></control><display><type>article</type><title>Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shirakawa, J ; De Jesus, D F ; Kulkarni, R N</creator><creatorcontrib>Shirakawa, J ; De Jesus, D F ; Kulkarni, R N</creatorcontrib><description>Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance and improve β-cell function. Although the effects of insulin secretion on metabolic organs such as liver, skeletal muscle and adipose is directly relevant for improving glucose uptake and reduce hyperglycemia, the ability of pancreatic β-cells to crosstalk with multiple non-metabolic tissues is providing novel insights into potential opportunities for improving β-cell function and/or mass that could have beneficial effects in patients with diabetes. For example, the role of the gastrointestinal system in the regulation of β-cell biology is well recognized and has been exploited clinically to develop incretin-related antidiabetic agents. The microbiome and the immune system are emerging as important players in regulating β-cell function and mass. The rich innervation of islet cells indicates it is a prime organ for regulation by the nervous system. In this review, we discuss the potential implications of signals from these organ systems as well as those from bone, placenta, kidney, thyroid, endothelial cells, reproductive organs and adrenal and pituitary glands that can directly impact β-cell biology. An added layer of complexity is the limited data regarding the relative relevance of one or more of these systems in different ethnic populations. It is evident that better understanding of this paradigm would provide clues to enhance β-cell function and/or mass in vivo in the long-term goal of treating or curing patients with diabetes.</description><identifier>ISSN: 0954-3007</identifier><identifier>EISSN: 1476-5640</identifier><identifier>DOI: 10.1038/ejcn.2017.13</identifier><identifier>PMID: 28294170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/443/319 ; 631/80/83 ; 64/60 ; 692/163/2743/137/773 ; 82/51 ; 96/95 ; Adiposity ; Animals ; Antidiabetics ; Beta cells ; Biology ; Blood Glucose - physiology ; Clinical Nutrition ; Crosstalk ; Databases, Factual ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Disease Models, Animal ; Endothelial cells ; Endothelial Cells - physiology ; Epidemiology ; Gastrointestinal Microbiome ; Gastrointestinal system ; Gastrointestinal Tract - microbiology ; Gastrointestinal Tract - physiology ; Homeostasis ; Humans ; Hyperglycemia ; Hyperglycemia - drug therapy ; Hypoglycemic Agents - pharmacology ; Immune system ; Innervation ; Insulin ; Insulin - metabolism ; Insulin resistance ; Insulin Secretion ; Insulin-Secreting Cells - physiology ; Internal Medicine ; Islet cells ; Liver - physiology ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Metabolism ; Microbiomes ; Minority &amp; ethnic groups ; Muscle, Skeletal - physiology ; Muscles ; Nervous system ; Neurons - physiology ; Organs ; Patients ; Pituitary ; Populations ; Public Health ; Reproductive organs ; review ; Skeletal muscle ; Thyroid</subject><ispartof>European journal of clinical nutrition, 2017-07, Vol.71 (7), p.896-903</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-707b23450c769ffb5a7a93f0303ce47b57b5dfaa7947f0d1b57401463acffd053</citedby><cites>FETCH-LOGICAL-c357t-707b23450c769ffb5a7a93f0303ce47b57b5dfaa7947f0d1b57401463acffd053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ejcn.2017.13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ejcn.2017.13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28294170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirakawa, J</creatorcontrib><creatorcontrib>De Jesus, D F</creatorcontrib><creatorcontrib>Kulkarni, R N</creatorcontrib><title>Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass</title><title>European journal of clinical nutrition</title><addtitle>Eur J Clin Nutr</addtitle><addtitle>Eur J Clin Nutr</addtitle><description>Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance and improve β-cell function. Although the effects of insulin secretion on metabolic organs such as liver, skeletal muscle and adipose is directly relevant for improving glucose uptake and reduce hyperglycemia, the ability of pancreatic β-cells to crosstalk with multiple non-metabolic tissues is providing novel insights into potential opportunities for improving β-cell function and/or mass that could have beneficial effects in patients with diabetes. For example, the role of the gastrointestinal system in the regulation of β-cell biology is well recognized and has been exploited clinically to develop incretin-related antidiabetic agents. The microbiome and the immune system are emerging as important players in regulating β-cell function and mass. The rich innervation of islet cells indicates it is a prime organ for regulation by the nervous system. In this review, we discuss the potential implications of signals from these organ systems as well as those from bone, placenta, kidney, thyroid, endothelial cells, reproductive organs and adrenal and pituitary glands that can directly impact β-cell biology. An added layer of complexity is the limited data regarding the relative relevance of one or more of these systems in different ethnic populations. It is evident that better understanding of this paradigm would provide clues to enhance β-cell function and/or mass in vivo in the long-term goal of treating or curing patients with diabetes.</description><subject>631/443/319</subject><subject>631/80/83</subject><subject>64/60</subject><subject>692/163/2743/137/773</subject><subject>82/51</subject><subject>96/95</subject><subject>Adiposity</subject><subject>Animals</subject><subject>Antidiabetics</subject><subject>Beta cells</subject><subject>Biology</subject><subject>Blood Glucose - physiology</subject><subject>Clinical Nutrition</subject><subject>Crosstalk</subject><subject>Databases, Factual</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - physiology</subject><subject>Epidemiology</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gastrointestinal Tract - physiology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - drug therapy</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Immune system</subject><subject>Innervation</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - physiology</subject><subject>Internal Medicine</subject><subject>Islet cells</subject><subject>Liver - physiology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Microbiomes</subject><subject>Minority &amp; ethnic groups</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Neurons - physiology</subject><subject>Organs</subject><subject>Patients</subject><subject>Pituitary</subject><subject>Populations</subject><subject>Public Health</subject><subject>Reproductive organs</subject><subject>review</subject><subject>Skeletal muscle</subject><subject>Thyroid</subject><issn>0954-3007</issn><issn>1476-5640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMFqGzEURUVoSFwnu66LoJssOu7TSBp5lsU4TSCQTbIMQtZI9rgzkitpSvtb-ZB8UzS1k0AoPBA8Ha6uDkKfCMwI0Pk3s9VuVgIRM0KP0IQwURW8YvABTaDmrKAA4hR9jHELkC9FeYJOy3lZMyJggh6Wf3adD61b49YlEwof1sphHXyMSXU_cfJ4cNr_NgH3Rm-Ua2MfcdqohINZD51KBj89Ftp0HbaZTK13WLkG9yrGM3RsVRfN-eGcovvL5d3iqri5_XG9-H5TaMpFKgSIVUkZBy2q2toVV0LV1AIFqg0TK56nsUqJmgkLDckLlv9SUaWtbYDTKbrY5-6C_zWYmGTfxrGScsYPUZK5EHPOSA6coi_v0K0fgsvtZFkRzsu6pHWmvu6pfyKCsXIX2l6Fv5KAHLXLUbsctUtCM_75EDqsetO8wi-eM1DsgbgbXZvw9up_A58BvjmN-g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Shirakawa, J</creator><creator>De Jesus, D F</creator><creator>Kulkarni, R N</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass</title><author>Shirakawa, J ; De Jesus, D F ; Kulkarni, R N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-707b23450c769ffb5a7a93f0303ce47b57b5dfaa7947f0d1b57401463acffd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/443/319</topic><topic>631/80/83</topic><topic>64/60</topic><topic>692/163/2743/137/773</topic><topic>82/51</topic><topic>96/95</topic><topic>Adiposity</topic><topic>Animals</topic><topic>Antidiabetics</topic><topic>Beta cells</topic><topic>Biology</topic><topic>Blood Glucose - physiology</topic><topic>Clinical Nutrition</topic><topic>Crosstalk</topic><topic>Databases, Factual</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - physiology</topic><topic>Epidemiology</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gastrointestinal Tract - physiology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - drug therapy</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Immune system</topic><topic>Innervation</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - physiology</topic><topic>Internal Medicine</topic><topic>Islet cells</topic><topic>Liver - physiology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Microbiomes</topic><topic>Minority &amp; ethnic groups</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Neurons - physiology</topic><topic>Organs</topic><topic>Patients</topic><topic>Pituitary</topic><topic>Populations</topic><topic>Public Health</topic><topic>Reproductive organs</topic><topic>review</topic><topic>Skeletal muscle</topic><topic>Thyroid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirakawa, J</creatorcontrib><creatorcontrib>De Jesus, D F</creatorcontrib><creatorcontrib>Kulkarni, R N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health and Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirakawa, J</au><au>De Jesus, D F</au><au>Kulkarni, R N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass</atitle><jtitle>European journal of clinical nutrition</jtitle><stitle>Eur J Clin Nutr</stitle><addtitle>Eur J Clin Nutr</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>71</volume><issue>7</issue><spage>896</spage><epage>903</epage><pages>896-903</pages><issn>0954-3007</issn><eissn>1476-5640</eissn><abstract>Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance and improve β-cell function. Although the effects of insulin secretion on metabolic organs such as liver, skeletal muscle and adipose is directly relevant for improving glucose uptake and reduce hyperglycemia, the ability of pancreatic β-cells to crosstalk with multiple non-metabolic tissues is providing novel insights into potential opportunities for improving β-cell function and/or mass that could have beneficial effects in patients with diabetes. For example, the role of the gastrointestinal system in the regulation of β-cell biology is well recognized and has been exploited clinically to develop incretin-related antidiabetic agents. The microbiome and the immune system are emerging as important players in regulating β-cell function and mass. The rich innervation of islet cells indicates it is a prime organ for regulation by the nervous system. In this review, we discuss the potential implications of signals from these organ systems as well as those from bone, placenta, kidney, thyroid, endothelial cells, reproductive organs and adrenal and pituitary glands that can directly impact β-cell biology. An added layer of complexity is the limited data regarding the relative relevance of one or more of these systems in different ethnic populations. It is evident that better understanding of this paradigm would provide clues to enhance β-cell function and/or mass in vivo in the long-term goal of treating or curing patients with diabetes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28294170</pmid><doi>10.1038/ejcn.2017.13</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-3007
ispartof European journal of clinical nutrition, 2017-07, Vol.71 (7), p.896-903
issn 0954-3007
1476-5640
language eng
recordid cdi_proquest_miscellaneous_1877854130
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 631/443/319
631/80/83
64/60
692/163/2743/137/773
82/51
96/95
Adiposity
Animals
Antidiabetics
Beta cells
Biology
Blood Glucose - physiology
Clinical Nutrition
Crosstalk
Databases, Factual
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - drug therapy
Disease Models, Animal
Endothelial cells
Endothelial Cells - physiology
Epidemiology
Gastrointestinal Microbiome
Gastrointestinal system
Gastrointestinal Tract - microbiology
Gastrointestinal Tract - physiology
Homeostasis
Humans
Hyperglycemia
Hyperglycemia - drug therapy
Hypoglycemic Agents - pharmacology
Immune system
Innervation
Insulin
Insulin - metabolism
Insulin resistance
Insulin Secretion
Insulin-Secreting Cells - physiology
Internal Medicine
Islet cells
Liver - physiology
Medicine
Medicine & Public Health
Metabolic Diseases
Metabolism
Microbiomes
Minority & ethnic groups
Muscle, Skeletal - physiology
Muscles
Nervous system
Neurons - physiology
Organs
Patients
Pituitary
Populations
Public Health
Reproductive organs
review
Skeletal muscle
Thyroid
title Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20inter-organ%20crosstalk%20to%20uncover%20mechanisms%20that%20regulate%20%CE%B2-cell%20function%20and%20mass&rft.jtitle=European%20journal%20of%20clinical%20nutrition&rft.au=Shirakawa,%20J&rft.date=2017-07-01&rft.volume=71&rft.issue=7&rft.spage=896&rft.epage=903&rft.pages=896-903&rft.issn=0954-3007&rft.eissn=1476-5640&rft_id=info:doi/10.1038/ejcn.2017.13&rft_dat=%3Cproquest_cross%3E1877854130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615529239&rft_id=info:pmid/28294170&rfr_iscdi=true