Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India)
To better understand the sources as well as characterization of regional aerosols at a rural semi-arid region Kadapa (India), size-resolved composition of atmospheric particulate matter (PM) mass concentrations was sampled and analysed. This was carried out by using the Anderson low-pressure impacto...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2017-01, Vol.24 (2), p.1719-1734 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To better understand the sources as well as characterization of regional aerosols at a rural semi-arid region Kadapa (India), size-resolved composition of atmospheric particulate matter (PM) mass concentrations was sampled and analysed. This was carried out by using the Anderson low-pressure impactor for a period of 2 years during March 2013–February 2015. Also, the variations of organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ion components (WSICs) present in total suspended particulate matter (TSPM) were studied over the measurement site. From the statistical analysis, the PM mass concentration showed a higher abundance of coarse mode particles than the fine mode during pre-monsoon season. In contrast, fine mode particles in the PM concentration showed dominance over coarse mode particle contribution during the winter. During the post-monsoon season, the percentage contributions of coarse and fine fractions were equal, whereas during the monsoon, coarse mode fraction was approximately 26 % higher than the fine mode. This distinct feature in the case of fine mode particles during the studied period is mainly attributed to large-scale anthropogenic activities and regional prevailing meteorological conditions. Further, the potential sources of PM have been identified qualitatively by using the ratios of certain ions. A high sulphate (SO
4
) concentration at the measurement site was observed during the studied period which is caused by the nearby/surrounding mining activity. Carbon fractions (OC and EC) were also analysed from the TSPM, and the results indicated (OC/EC ratio of ~4.2) the formation of a secondary organic aerosol. At last, the cluster backward trajectory analyses were also performed at Kadapa for different seasons to reveal the origin of sources from long-range transport during the study period. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-016-7917-1 |