IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway
Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular...
Gespeichert in:
Veröffentlicht in: | Cell biochemistry and biophysics 2017-03, Vol.75 (1), p.139-147 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Cell biochemistry and biophysics |
container_volume | 75 |
creator | Wang, Hui-jin Zhou, Yu Liu, Rui-ming Qin, Yuan-sen Cen, Ying-huan Hu, Ling-yu Wang, Shen-ming Hu, Zuo-jun |
description | Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy. |
doi_str_mv | 10.1007/s12013-017-0782-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877850019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861592340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-98bf53afb26728b5f281fc83c01a2f05111634612d9529f15ac6de700d7cd9543</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EoqXwAbggS1x6MTtjx7F9LNFSKopYbQFxi7xZezdVErd2Itpvj8MWhJCQOPnfb9688SPkJcIbBFCLhBxQMEDFQGnOzCNyjFIaBlyLx3kPWjKDRh6RZyldA3AORfGUHHGNiArhmNxerBjCovpWrQU9u2sTXcXQh9ElOu7dfOha76Id2zDQ4OlXm5qps5Fe9SGMe_pxSk3naOW6bq6IYdrt6XL9ARd8Ua2Xb-lVuxts1w47urLj_ru9f06eeNsl9-JhPSFf3i0_V-_Z5afzi-rskjUFyJEZvfFSWL_hpeJ6I3327BstGkDLPcg8QCmKEvnWSG48StuUW6cAtqrJV4U4IacH3ZsYbieXxrpvU5N92sGFKdWoldISAM1_oCVKw0UBGX39F3odppgn_CmY_1sJVWYKD1QTQ0rR-fomtr2N9zVCPUdXH6Krc3T1HF09m3j1oDxterf9XfErqwzwA5Dy07Bz8Y_W_1T9AY0Fn9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870857376</pqid></control><display><type>article</type><title>IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Hui-jin ; Zhou, Yu ; Liu, Rui-ming ; Qin, Yuan-sen ; Cen, Ying-huan ; Hu, Ling-yu ; Wang, Shen-ming ; Hu, Zuo-jun</creator><creatorcontrib>Wang, Hui-jin ; Zhou, Yu ; Liu, Rui-ming ; Qin, Yuan-sen ; Cen, Ying-huan ; Hu, Ling-yu ; Wang, Shen-ming ; Hu, Zuo-jun</creatorcontrib><description>Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1007/s12013-017-0782-9</identifier><identifier>PMID: 28111710</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Biotechnology ; Cell Biology ; Cell Proliferation ; Cells, Cultured ; Chemokine CXCL10 - physiology ; Cyclic AMP Response Element-Binding Protein - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Humans ; Life Sciences ; MAP Kinase Signaling System ; Muscle, Smooth, Vascular - cytology ; Myocytes, Smooth Muscle - physiology ; Original Paper ; Pharmacology/Toxicology ; Protein Binding ; Protein Interaction Mapping ; Receptors, CXCR3 - physiology</subject><ispartof>Cell biochemistry and biophysics, 2017-03, Vol.75 (1), p.139-147</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Cell Biochemistry and Biophysics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-98bf53afb26728b5f281fc83c01a2f05111634612d9529f15ac6de700d7cd9543</citedby><cites>FETCH-LOGICAL-c405t-98bf53afb26728b5f281fc83c01a2f05111634612d9529f15ac6de700d7cd9543</cites><orcidid>0000-0002-3802-6623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12013-017-0782-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12013-017-0782-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28111710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hui-jin</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Rui-ming</creatorcontrib><creatorcontrib>Qin, Yuan-sen</creatorcontrib><creatorcontrib>Cen, Ying-huan</creatorcontrib><creatorcontrib>Hu, Ling-yu</creatorcontrib><creatorcontrib>Wang, Shen-ming</creatorcontrib><creatorcontrib>Hu, Zuo-jun</creatorcontrib><title>IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><addtitle>Cell Biochem Biophys</addtitle><description>Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chemokine CXCL10 - physiology</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>MAP Kinase Signaling System</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Receptors, CXCR3 - physiology</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxS0EoqXwAbggS1x6MTtjx7F9LNFSKopYbQFxi7xZezdVErd2Itpvj8MWhJCQOPnfb9688SPkJcIbBFCLhBxQMEDFQGnOzCNyjFIaBlyLx3kPWjKDRh6RZyldA3AORfGUHHGNiArhmNxerBjCovpWrQU9u2sTXcXQh9ElOu7dfOha76Id2zDQ4OlXm5qps5Fe9SGMe_pxSk3naOW6bq6IYdrt6XL9ARd8Ua2Xb-lVuxts1w47urLj_ru9f06eeNsl9-JhPSFf3i0_V-_Z5afzi-rskjUFyJEZvfFSWL_hpeJ6I3327BstGkDLPcg8QCmKEvnWSG48StuUW6cAtqrJV4U4IacH3ZsYbieXxrpvU5N92sGFKdWoldISAM1_oCVKw0UBGX39F3odppgn_CmY_1sJVWYKD1QTQ0rR-fomtr2N9zVCPUdXH6Krc3T1HF09m3j1oDxterf9XfErqwzwA5Dy07Bz8Y_W_1T9AY0Fn9Q</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Wang, Hui-jin</creator><creator>Zhou, Yu</creator><creator>Liu, Rui-ming</creator><creator>Qin, Yuan-sen</creator><creator>Cen, Ying-huan</creator><creator>Hu, Ling-yu</creator><creator>Wang, Shen-ming</creator><creator>Hu, Zuo-jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3802-6623</orcidid></search><sort><creationdate>20170301</creationdate><title>IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway</title><author>Wang, Hui-jin ; Zhou, Yu ; Liu, Rui-ming ; Qin, Yuan-sen ; Cen, Ying-huan ; Hu, Ling-yu ; Wang, Shen-ming ; Hu, Zuo-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-98bf53afb26728b5f281fc83c01a2f05111634612d9529f15ac6de700d7cd9543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chemokine CXCL10 - physiology</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>MAP Kinase Signaling System</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Receptors, CXCR3 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui-jin</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Rui-ming</creatorcontrib><creatorcontrib>Qin, Yuan-sen</creatorcontrib><creatorcontrib>Cen, Ying-huan</creatorcontrib><creatorcontrib>Hu, Ling-yu</creatorcontrib><creatorcontrib>Wang, Shen-ming</creatorcontrib><creatorcontrib>Hu, Zuo-jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui-jin</au><au>Zhou, Yu</au><au>Liu, Rui-ming</au><au>Qin, Yuan-sen</au><au>Cen, Ying-huan</au><au>Hu, Ling-yu</au><au>Wang, Shen-ming</au><au>Hu, Zuo-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway</atitle><jtitle>Cell biochemistry and biophysics</jtitle><stitle>Cell Biochem Biophys</stitle><addtitle>Cell Biochem Biophys</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>75</volume><issue>1</issue><spage>139</spage><epage>147</epage><pages>139-147</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28111710</pmid><doi>10.1007/s12013-017-0782-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3802-6623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-9195 |
ispartof | Cell biochemistry and biophysics, 2017-03, Vol.75 (1), p.139-147 |
issn | 1085-9195 1559-0283 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877850019 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biophysics Biotechnology Cell Biology Cell Proliferation Cells, Cultured Chemokine CXCL10 - physiology Cyclic AMP Response Element-Binding Protein - metabolism Extracellular Signal-Regulated MAP Kinases - metabolism Humans Life Sciences MAP Kinase Signaling System Muscle, Smooth, Vascular - cytology Myocytes, Smooth Muscle - physiology Original Paper Pharmacology/Toxicology Protein Binding Protein Interaction Mapping Receptors, CXCR3 - physiology |
title | IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IP-10/CXCR3%20Axis%20Promotes%20the%20Proliferation%20of%20Vascular%20Smooth%20Muscle%20Cells%20through%20ERK1/2/CREB%20Signaling%20Pathway&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Wang,%20Hui-jin&rft.date=2017-03-01&rft.volume=75&rft.issue=1&rft.spage=139&rft.epage=147&rft.pages=139-147&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1007/s12013-017-0782-9&rft_dat=%3Cproquest_cross%3E1861592340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870857376&rft_id=info:pmid/28111710&rfr_iscdi=true |